it UNCLASSIFIED ¥ Uik TR I_Nrf

! '."!‘] SECURITY CLASSIFICATION OF THIS PAGE (Whan Dau‘Erlrforod).

bE REPORT DOCUMENTATION PAGE RN
',);Q: N 1. REPORT NUMBER 2, GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER]
:c:: AFIT/CI/NR 88- §0 {
3::::' " TITLE (and Subtitte) 5. TYPE OF REPORT & PERIOD COVERED |
{‘ ASYN CHRopoVS 0:GITAL PHROMB THESIS l
;fu;:\“ feGuLATORS 5. psnsonu’;uls ORG. REPORT NUMBER '
a ."i" . ;
:::.::; AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)

R

':33’:33 VELNON SCOTT 1) TaHEY

AD-A196 911

RGANI X) 10. PR AM ELEMENT, P ECT, TA
?’9’ “ PERFORMING ORGANIZATION NAM; AND ACDRESS Aﬂggnh woRLK 5NPT NURMOBJERS SK
A AFIT STUDENT AT: STANFOLD UIIVERSITY
3"&8{1
" :l
” b CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
{ 1988
'?; % . . 13. NUMBER OF PAGES
1l
A !
:\":;’ . 14, MONITORING AGENCY NAMU & ADDRESS(#f different lrom Conlrolllnd Oltlice) 15, SECURITY CLASS, (of this report)
’gi ' AFIT/NR ’ ' | UNCLASSTFIED
AN Wright-~ Patterson AFB OH 45433-6583 . -
e 83, DECL ASSIFICATION 1loownomomo —
i SCHEDULE

Ao : _ :

18, DISTRIBUTION §T ATEMENT (ol this Report) T

{_ } YDIST_RIBUTED UNFIMITED. APPROVEDfOR PUBLIC RELEA:E o DTiC

& ELECTE iR
b . AUG 0 31935
‘}"‘ 17, GISTRIDUTION STATEMENT fof the aba’ract entorad In Block 20, i difiarcal irom Repoti) ‘ -

\

3 ‘2 1 SAME AS REPORT

7 N
\a-#

.

[}

ry

>

10. SUPPLEMENTARY HOTES :

Approved for Public.Releases AW AFR 190-§ /
LYNN E. WOLAVER L 16,4 &
Dean for Research §fd Professional Development

<. ““"‘-'w"‘:‘z?'.;‘?
L 1:‘;%
e o~
X EAA A

i Air Force Instituté of ‘lechnclogg

e Wriahit-Paiterson AFB_(OH 4 3
Mt 13, KEY WORDS ft.‘onnnuo on toveres alde il necessssy mwd ddantity by block aumber)

R ‘

ol

|

-‘ . 30. ANLTRAGY (Contin.w o us‘oﬂ.m atan i ucc&uw and fdentity by Méck numbesr) - ;‘
) r} - Ai ATTACHED

; .

fodf ot

""' “}’f
’

LT

) ; DD (Sai'sy 1473 eoimion or 1 nov es s ”§E P’CU\SS!FIEQ

~— SECURITY CL ASSIFICATION OF TRIS PAGE (Wian Dela Enfered)

e — M

Asynchronous Digital Regulators

™ Vernon Scott Ritchey, Ph.D.
; Stanford University, 1987 L

This report presents methods for designing and analyzing multirate asynchronous
digital controls for linear systems. Multirate digital control is a natural approach
for systems with widely-spaced natural frequencies. An asynchronous architecture
provides a simple approach for assigning control tasks to distributed processors.

Previous multirate design methods required either synchronized samplers or high
sample rates. Synchronized samplers produce a system that is periodically time
varying. Alternatively, high sample rates simulate a continuous controller. In prac-
tice, synchronized implementations and implementations with high sample rates
‘may have higher cost, complexity, and weight and lower reliability .compared to
asynchronous designs. In some cases, an asyncbronous implementation with slow
sampling will pérform us well as a fast, synchronized design. The goal of this re-
search was to develop methods to design and evaluate asynchronous control systemns
operating at minimal sample rates,

S The multivate asynchronous <('lesign end analysis methods doveloped in this re-
port use a time-domain approach based on the closed-loop state transition matrix.
Design and analysis algorithms (implemented in PC-MATLAB) are included in an
Appendix. The analysis is based on a sufficient stability ciiterion which gives an
objective incasure of long-terma stability and indicates short-tors stability, de-
sign method allows the designer to specify the form of the controller. Numerical

- optimization is used to minimize a quadratic cost integral. Design and analysis
exziples are prescated for a double integrator plant and a two-link robot arm. /

o~

s

/f.
Approved for Publication: \ (A /

B’/ﬁ% P(AZAM%

For Major Departinent

By

Dean of Graduste Studies

N\,
!

f K S A e

- Preceding Page/s

ASYNCHRONOUS DIGITAL REGULATORS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

"By
Vernon Scott Ritchey
June 1987

Accesion For

NTIS CRagy o
DTIC 7aB 0
Unannowiced]
Justification
e e T

By .
Cistribrtia., /
Avittahity l:;l:*.s—

- ————

- - —

VA gnd
Dist | e

CERTIFICATE OF FINAL READING OF DISSERTATION

f_ Each doctoral disssrtation, when submitted to the Graduate Program
Oftice, must be accompanied by this page, with the signature of one of the
readers who signed the dissertation.

It is hoped that this final reading will ensure that (1) footnotes and bibli-
ography are in appropriate and consistent form; (2} all required illustrative
tables and charts are in place; (3) all suggested changes have been incor-
porated in the manuscript; and (4) the dissertation is booklike in appearance
and ready for binding and microfilming. _

S ST

CERTIFICATE OF PINAL RCADING OF DISSERTATION ,

To the University Committes on Graduate Studies:

| cartily that | have read the dissartation of MQ’VVWVI M / (! 74/

by,
in its linal forin for submission and have found it to be satistactory. g
{SIONATURR)

Py A2 1997
0“ (care)

Asynchronous Digital Regulators

Vernon Scott Ritchey, Ph.D.
Stanford University, 1987

This report presents methods for designing and analyzing multirate asynchronous
digital controls for linear systems. Multirate digital control is a natural approach
for systems with widely-spaced natural frequencies. An asynchronous architecture
provides a simple approach for assigning control tasks to distributed processors.

Previous multirate design methods required either synchronized samplers or high
sample rates. Synchronized samplers produce a system that is periodically time
varying. Alternatively, high sample rates simulate a continuous controller. In prac-
tice, synchronized implementations and implementations with high sample rates
may have higher cost, complexity, and weight and lower reliability compared to
asynchronous designs. In some cases, an asynchronous implementation with slow
sampling will perform as well as a fast, synchronized design. The goal of this re-
search was to develop methods to design and evaluate asynchronous control systems
operating at minimal sample rates.

The multirate asynchronous design and analysis methods developed in this re-
port use a time-domain approach based on the closed-loop state transition matrix,
Design and analysis algorithms (implemented in PC-MATLAB) are included in an
Appendix. The analysis is based on a sufficient stability criterion which gives an
objective measure of long-term stability and indicates short-term stability. The de-
sign method allows the designer to specify the form of the controller, Numerical
optimization is used to minimize a quadratic cost integral. Design and analysis
examples are presented for 8 double integrator plant and a two-link robot arm.

Approved for Publication:

w52 K Bl

For Major Department

By

Decan of Graduate Studies

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a dissertation for the degree of Doctor of Philosophy.

A4 k)

Gene F. Franklin
(Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a dissertation for the degree of Doctor of Philosophy.

(. T Poria

Arthur E. Bryson

I certify that I have read this thesis and that in my
opinion it i3 fully adequate, in scope and in quality, as
a dissertation for the degree of Doctor of Philosophy.

N

‘Peter M. Banks

Approved for the University Committee on C.adunte
Studies:

Dean of Graduate Studies

i

Abstract

This report presents methods for designing and analyzing multirate asynchronous
digital controls for linear systems. Multirate digital control is a natural approach
for systems with widely-spaced natural frequencies. An asynchronous architecture
provides a simple approach for assigning control tasks to distributed processors.

Previous multirate design methods required either synchronized samplers or high
sample rates. Synchronized samplers produce a system that is periodically time
varying. Alternatively, high sample rates simulate a continuous controller. In prac-
tice, synchronized implementations and implementations with high sample rates
may have higher cost, complexity, and weight and lower reliability compared to
asynchronous designs, In some cases, an asynchronous implementation with slow
sampling will performn as well as a fost, synchronized design, The goal of this re-
search was to develop methods to design and evaluate asyachironous control systems
opcrating at minimal sample rates.

The multirate asynchronous design and analysis methods developed in this re-
port use a time-domain approach based on the closed-loop state transition matrix.
Design and analysis algorithms (implemented in PC-MATLAB) are included in an
Appendix. The analysis is based on a sufficient stability criterion which gives an
objective measure of long-term stability and indicates short-term stability. The de-
sign mcthod allows the designer to specify the form of the controller. Numerical
optimization is used to minimize a quadratic cost integral. Design and anAlysis
examples are presented for a double integrator plant and a two-link robot arm.

!

Acknowledgments

I sincerely wish to thank my advisor, Professor Gene F. Franklin, for his support,
encoursgement, and guidance throughout my research at Stanford.

I also thank the otler members of my reading committee, Professors Arthur E.
Bryson and Peter M. Banks, for their diligent review and constructive comments.

I especially thank my fellow students for their support and friendship. Their
assigtance and encouragement have been invaluable throughout my study at Stan-
ford.

I thank the U.S. Air Force for the opportunity and financial support to pwsue
this program.

Finally, I thank my wife for her patience and understanding throughout these
last few years.

Contents

Abstract

Acknowledgments

1

Introduction

Ll Purpose . v v vt i e e e e e e e Ce
12 RelatedLiterature v it v ittt G
13 Overview e e e e e e e e e
14 ScopeofMethods. it
15 Contributions

Problem Description

2.1 Motivation e e e e e e
2.2 Asynchronous Definitions e e e e e e e e
2.2.1 Simultaneous Sample Processes
222 Synchronous and Asynchronous Sempling
223 BasicTimePeriod
224 Phase L e e e e e C e
225 DTP Scgmentsand Events e e e
2.3 Sample Rate Considerations
2.4 Limitations of Existing Design Methods
241 AdHocApproaches
242 ExactMethods -
2.43 Common Limitations. e C e

iii

8

o

o

A
iE:E:s 3 Deflnitions, Conventions, and Notation 19
E;,:,EE 3.1 Synchronous Sampling v it i e e 19
i::f: 3.2 Basic Time Period e e e e e e e e 19
‘D 3.2.1 Synchronous Basic Time Period. 19
EEEE%. 3.2.2 Asynchronous Basic Time Period 20
;E'é}i 323 SequencePhasing............civuivinennn 20
:9:‘;' 3.3 Kalman-Bertram Representation 21
{ " 331 TheStateVector n.. 21
"" » 3.3.2 State Transition Matrices e e e e e 22
*g'f h 3.33 BTP State TransitionMatrix 24
th 3.4 Asynchronous System Description 24
:}‘: 35 CostFunction. i i it s e e 26
‘?3?; 3.6 Process Noise e ... 28
ffi", 3.7 Cost Function Scope . ., Ve e 28
it.i:’g 4 Asynchronous Stability Condition 31
;:5:' 41 Stability Definition e 31
Rt 42 Factorsof ¥ vv v e 32
::‘),“: 4.3 General Sufficient Condition e e e R &
35;;:\{: 4.4 Asynchronous Multirate Stability H
;;32‘:;; 4.41 AulImportont Special Case cevees. 39
“': 4.5 Eigenvector Scaling e e e e A
B 46 Analysis of Result e AU
\:’ 5 Stability Examples 39
% S THOSYSLEM « o oo evvee et e A 30
i‘; 52 NomimalSampling e, 40
53 AsynchromousSampling L .. a1
3 531 Analysis for BTP=1o\ vovvvnnrannnnns al
5.3.2 Analysis for Synchronows BTP(90) 41

viii

6 Synchronous Design Method 43

61 CostandGradient, 43
6.1.1 InitialCost Function. 44
612 InitialGradient 44
613 MainCostFunction oo 45
6.14 Gradient of Main Cost Function 51
6.2 SearchAlgorithm 82
%;;;;'f': 7 Asynchronous Design Method 55
ﬂ!ﬁé 7.1 Synchronous with Random Phase 55
'23{:,.‘ 711 OneRandomPhase0..00u... 56
el 7.12 Design AIGOMthin . « o« oo o v e e 57
f 7.2 Asynchronous Design. b e e e e e 98
: 8 Design Examples 59
{0 ' 8.1 Double IntegratorExamples o o, 59
p 8.1 Nominal Case. e 60
;‘?, 8.1.2 Syuchronous Case e e e e e e e e e 61
813 Asynchronous Case.o u.ii ittt . 6
3y 8§14 SompleRateEffects 0o i v, 05
82 TwolLiokAmmExomples e 0
A 821 NominalCase. AT 72
& 822 AsynchronousCase. v vt v i i vt e 73
.ﬁ 9 Practical Counsiderations 7
* 9.1 BTPSelectiont 17
i 911 RuleofThumb, . 18
n 012 Rationale e 78
ti 9.2 Asynchronous Analysis of Synchronous Systems 79
&% 9.3 Accelerated Convergence L e e e 80
Y 9.4 Cost Weighting Matricesoouviiun.. ... 80
L W 95 NumecricalPropesties. v .. 81
I;a}};}
o i
i

9.6 PC-MATLAB Implementation 82

9.6.1 Square Root Algorithms 82

10 Summary and Recommendations 8%

10.1 Summary . .. v v vt e e e e e e e e e e 85

10.2 Recommendations for Future Research 85

A Eigensystem Derivatives 87

Al Problem Statemento o 87

A2 EquationDevelopment, 88

A2.1 Eigenvector Derivatives 89

A3 The Singularity Condition o oL 30

B Discrete Conversion 93

B.l Problem Statement b e e e 93

B.2 Van Loan Results e et e e e e e e 94

B3 MoinResult L e e e e e e 95
Bd Pioofs i, e e e 9
B4l @Partial ,....... e e e e e Ve e 96

B42 QuandRPartinls Ve e e e - 07

C STM Coutinnity _ 99

C.l ThePhaseCondition 99

C.2 Boundary Conditions e e e e O (1) |

C21 BTPTruncationCases 101

C22 CommutivityCases BEEREEEEE 101

C23 Recap C e e e e e e e 102

D Theorem Proofs ' : 103

D.1 NotationandDefinitions 103

D.2 Theoremsand Proofs b e e st .. 104

E Computer Codes 111

E.l UtilityRoutines. v it i it e e 112
E.1.1 Build Two-Link Arm System: buildtlam 112
E.1.2 Build Double Integrator System: builddinm 115
E.1.3 Check Dimensional Consistency: checkm 118
E.1.4 Install Gains in System: updatem 120
E.1.5 Find Phase of ¥ Discontinuities; casesm 120
E.1.6 Display Time and Date: shotimem. 123

E.2 AnalysisRoutines. 124
E.2.1 Top-levelStructure. 124
E.2.2 User Interface: analyzem 124
E.23 MainProgram: mrasm, 125
E.24 STM Calculation: psixm 128

E3 DesignRoutines i 132
EJ3.1 Top-levelStructure 132
E.3.2 User Interface: designm v 132
E.3.3 Main Optimization Program: varopt2m 133
E.3.4 Asynchronous Cost and Gradient: acstgrd2.m. 136
E.3.5 Asynchronous Cost Only: acst2m cee s 140
E.3.6 Cost and Gradient Definition: cstgrd2m 143
E.3.7 STM and Partials: psi2plusm. 145
E.3.8 Precomputation for psi2plus: trains2m 183
E39 STMOaly: psi2mo v i v, 158
E.3.10 Linear Search: linsrch2m v v v v v v v v v v ot u 160

Bibliography ' 164

List of Tables

8.1 Parameters for Double Integrator Examples 60
8.2 Parameters for Two-Link Arm Examples. 71

List of Figures

2.1 Simultaneous Independent Controllers

2.2 Superposition of Simultaneous Independent Sample Processes
2.3 Asynchronous BTP and Phase e e e e e

3.1 PhaseConcept vt ittt it e
3.2 Block Diagram of Hybrid System PR
3.3 Event Timeline llustration e e e
3.4 Timeline lllustration e e e e e

~ 41 Synchronous Stability Plot, Nominal Gains., -
4.2 Asynchronous Stability Plot, Nominal Gains.

9.1 Block Diagram for Exatple System e e
5.2 Stability Plot, Nominal Gaius, Long BTP

8.1 Block Diagram for Double Integrator System
8.2 Step Response: Nominal Gains, Synchronous Sampling
8.3 Step Response: Nominal Gains, Asynchronous Ssmpling
8.4 Synchronous Stability Plot, Synchronous Gains
8.5 Step Response: Synchronous Gains, Synchronous Sampling

8.6 Asynchronous Stability Plot, Synchronous Gains
8.7 Step Response: Synchronous Gaius, Asynchvonous Sampling

8.8 Asynchronous Stability Plot, Asynchronous Gains ‘

8.9 Asynchronous Stability Plot, Asynchronous Gains, Long BTP
8.10 Step Response: Asynchionous Gains, Asynchronous Ssmpling

xv

37
38

40
42

-

>

s’
o

L e am S R
”'QCJ&'?.—:-”’{-
2

£ o i
i

P
Foair

<« 6
D

)

Y - - 1 - ~
g N

=4

-
-
'

. B

|, "os?

8.11 Synchronous Stability Plot, Asynchronous Gains 67
8.12 Step Response: Asynchronous Gains, Synchronous Sampling. 67
8.13 Optimal Cost as a Function of Sample Rate 68
8.14 Block Diagram for Two-Link Robot . . o v v v e ee e o 71
8.15 Synchronous Stability Plot, Synchronous Gains 72
8.16 Step Response: Synchronous Gains, Synchronous Sampling 73
8..7 Step Response: Synchronous Gains, Asynchronous Sampling. 74
8.1 Asynchronous Stability Plot, 'Asynchronous Gains 74
8.19 Step Response: Asynchronous Gains, Asynchronous Sampling 75
8.20 Step Response: Asynchronous Gains, Synchronous Sampling. 76
C.1 Phase Relationships 100
xvi

Chapter 1

Introduction

1.1 Purpose

‘The purpose of this research was to develop methods to design and analyze asyn-
chronous digital control systems. Digital control systems can provide high reliabil-
ity with low cost and weight using modern digital integrated circuits. Distributed
system architecture can also reduce cost or improve fault tolerance. Also, unsyn-
chronized distributed systems may be easier to build. Consequently, asynchronous
digital design is a natural approach for implementing many distributed control sys-
tems.

Synchronized multirate systems are a special case of the asynchronous digital
system. Synchronous multirate systems are periodically time varying because the
sample process repeats exactly after some period. Existing multirate design ap-
proaches use this periodic behavior as the basis for design and analysis.

With true asynchronous systems, the ratio of sample periods is irrational and
the sampling pattern never repeais exactly. However, asynchionous sample patterns
can be approximated by synchronous patterns just as itrational numbers can be ap-
pro.imated by rational fractions to any desived accuracy. A similar approximation
is the basis of the asynchronous design method developed here.

1

2 Chapter 1. Introduction

1.2 Related Literature

The asynchronous discrete-time control problem is the general case of- the syn-
chronous multirate digital control problem. Walton [Wal81] and Glasson [Gla83]
developed comprehensive surveys of existing multirate methods. Multirate digi-
tal design has been a topic of continuing interest since the early 1950’s. Existing
multirate methods generally fall into two classes: frequency domain methods and
time domain methods. All previous methods were limited to synchronous systems.
Specifically, all sample period ratios had to be rational numbers such that the sys-
tem was periodically time varying.

The original synchronous frequency domain techniques were Frequency Decom-
position of Sklansky [SR55] and Switch Decomposition of Kranc [Kra57]. Subse-
quent efforts by Coffey and Williams [CW66], Jury [Jur68] [Jur67], Boykin and
Frazier [BF75}, and Whitbeck [WHT78] extended and expanded the Switch and Fre-
quency decomposition techniques.

Kalman and Bertram [KB39] described a general state space analysis technique
for hybrid linear systems. This technique was the basis for several optimal control
design approaches. Glasson and Broussard {GB79) [BH84] [BG80} , Amit and Powell
[Ami80) [AP81}, and Lennartson {Len86] solved the optimal synchronous multirate
state-feedback regulator problem. Berg and Powell [Ber86] solved the more general
constrained problem for a controller of specified form (such as partial state feedback
with constant gains).

All of these methods required synchronous sampling (rational sample period
ratios).

1.3 Overview

This report addresses two related, multirate digital control topics. First, a suf-
ficient stability criterion is developed for asynchronous multirate linear systems.
Second, a new synchronous multirate design method is developed and extended to
asyachronous systems. '

1.3. Overview 3

The analysis approach described here was based on existing synchronous meth-
ods with an additional allowance to account for the difference between the actual
sample pattern and a synchronous approximation. The resulting stability criterion
is a sufficient condition that can guarantee asynchronous stability (but does not
prove instability). The criterion also gives a figure of merit analogous to a right-
most s-plane bound for the poles of a linear, time-invariant system. This author
doubts the existence of a necessary and sufficient condition for true asynchronous
stability. In practice, this is not a problem because the synchronous approximation

can be arbitrarily precise.

The design approach is an extension of the Constrained Optimization Synthesis
design method [Ber86). The cost and gradient formulations are new, A gradient
search finds controller coefficients which minimize a scalar cost function. The de-
signer specifies the controller structure, cost weighting, and the process noise. Then
the algorithm finds optimal gains that minimize the weighted mean square state er-
rory. If the specified process noise exceeds the synchronous approximation error the
resulting design should be stable and well behaved.

This method and the Constrained Optimization Synthesis method produce iden-
tical results given the same synchronous problem. This new method has three
advaatages. First, this method avoids numerical overflow and manual fine-tuning
during the gradient search. Second, generalized forms for the cost and process noise
accommodate discrete measurement noise and saturation penalties. Finally, this
method computes the gradients and Hessian only for actual feedback gains (instead
of all possible feedback paths). This last factor gives a significant reduction in
computation time and data storage.

The basic design method finds optimal feedback gains for synchronous sam-
pling at a specified phasing (for instance, two samplers with simultaneous initial
samples). This basic method is extended rigorously to synchronous sampling with
random phasing. Without rigorous proof, heuristic arguments are made for apply-
ing the extended method to the true asynchronous sampling case. The stability of
the resulting asynchronous design can be verified with the asynchronous stability
-» ‘terion, and the performance can be evaluated by simulation.

4 Chapter 1. Introduction

PC-MATLAB [MLBKS&5] computer codes were developed for the design and
analysis methods. These codes are included in Appendix E. Sample design cases
illustrate the methods and some properties of asynchronous systems.

1.4 Scope of Methods

The design and analysis methods are suitable for multi-input/multi-output systems.
The formulation does not distinguish between plant and controller or between states,

inputs, or controls. The methods apply to linear systems composed of:

e a linear, time-invariant continuous-time part described by &, = Az. + Bu
where A and B are constant matrices, z. is the continuous state vector, and

U =T,

e sample-and-hold elements with outputs z, described by a finite number of
state transition matrices of the form z,(t*) = S;X(t™) where each S; is con-
stant and X = [zTzlz])7, and

¢ a discrete-time part described by a finite number of different state transition
matrices of the form z4(tt) = D;X(t™) where each D; is constant .

The usual continuous measurement and feed-forward matrices (C and D), typical of
the geueral linear, time-invariant system, are embedded in the S; and D; matrices.
Auy number of arbitrary, periodic sample schedules may simultancously control the
discrete time events (§; snd D;). The main restriction in both the analysis and
design methods is that the closed loop state transition matrix (STM) must have
a full sct of eigenvectors (non-defective). However, the design method extends to
defective STM with repeated eigenvalues at zero.

1.5 Contributions

The primary contributions of this research are:

¢ The sufficient stability criterion for asynchronous digital systems.

1.5. Contributions 5

o An improved constrained optimization synthesis method for synchronous mul-

tirate designs.

o Extension of the synchronous multirate method to the synchronous case with

random phasing and to the asynchronous case.

Chapter 2
Problem Description

This section defines synchronous and asynchronous sampling and discusses reasons
for employing asynchronous designs. The merits of fast and slow sample rates
are discussed. Finally, several current design approaches and their limitations are
reviewed.

2.1 Motivation

Multirate digital control design is motivated, primarily, by plants with a wide range
of natural frequencies. For example, if the plant has a 100 Hz mode and a 1 Hz mode,
the fast modes may require 300 to 1,000 control updates per second while 3 to 10
updates per second are adequate for the 1 Hz mode. Using the same high rate for
both modes wastes computer capacity and measurement/control signel bandwidth.
Hence, multirate control is a natural approach for many real applications.

The usual motivation for asynchronous control is a distributed control system
architecture with multiple controllers. This situation may occur when several cheap
computers are used instead of one expensive computer or when the controllers are
not physically colocated. In either case, synchronizing all the sample processes to
the same master clock may increase cost and complexity. When asynchronous de-
signs give adequate performance, the additional cost and complexity is unnecessary.

System integrity requircments may also motivate asynchronous design. In a

1

8 Chapter 2. Problem Description

fault-tolerant design, the plant may have several independent controllers, each ca-
pable of controlling the plant with the others failed. In this case, requiring synchro-

nized controllers may introduce a single-point failure mode.

2.2 Asynchronous Definitions

The problem is to devise methods to design and analyze systems with asynchronous
digital controllers. Key asynchronous concepts and definitions are now reviewed to
help clarify and focus the problem.

2.2.1 Simultaneous Sample Processes

Asynchronous systems have two or more independent digital controllers operating
simultaneously as shown in Figure 2.1. The relative timing between the sample
processes will be called phase (precise definition later). The overall sequence of
events, or sample schedule, is found by superimposing events from the independent
processes as shown in Figure 2.2,

{ Controller 1 }

1
l SLH 1] ul y ~ Tl
Linear Plant
2
SLH 2 u2 | yé T2

{ Controller 2 I

Figure 2.1: Simultaneous Independent Controllers

2.2. Asynchronous Definitions 9

12 3 12 3 12 3
I |
1st Sampler

AB AB AB AB AB AB AB AB
tt ¢+t ¢t t¢ ¢t tt ¢t time
2nd Sampler
12 3AB AB 12 3B AB 12 3 AB
L 1§¢ ¢ 440 it ¢t ¢ | S & S
IR R ik i
Composite Sample Schedule

Figure 2.2: Superposition of Simultaneous Independent Sample Processes

2.2.2 Synchronous and Asynchronous Sampling

The intuitive idea of asynchronous sampling (independent samplers with no master
clock) is essentially correct. In practice, independent clocks do not stay synchronized
exactly. Therefore, even identical samplers will drift in “phasing” when controlled
by independent clocks. A rigorous definition for asynchronous and asynchronous
sampling follows.

Consider a system with n periodic sampling processes with periods Ty, Ty, ... Th.
If there exists a set of positive integers {&y, k3, ..., kn} such that TYky = T3ky =
+++ = Tuky,, then the system is synchronous. Alternatively, the ratio of every two
sample periods is a rational nuniber for synchionous systems. Synchronous systems
are periodic with finite period (period = T}k;).

Conversely, asynchronous systems have at least one pair of sample periods whose
ratio is irrational. With asynchronous sampling, the sample schedule is not periodic.

10 Chapter 2. Problem Description

2.2.3 Basic Time Period

Observe that if the set {ky, kg, ...k, } satisfies the above condition for synchronous
sampling, then {jky, jka, ...jks} , with j a positive integer, also satisfies the condi-
tion. A unique basic time period (BTP) for synchronous systems is defined as T;k;

where {ky, ks, ...k,} have no common factors.

A non-unique basic time period (BTP) can be defined for asynchronous systems
as follows. Suppose the designer selects a set of positive integers {k, k3, ...kn}
such that: Tiky = Tk =~ +-- & Tk, Then Tik; is a BTP and the i'th sample
sequence is designated the key sequence (since the BTP is keyed to that sequence).
Note that there are an infinite number of choices for the k's. The T;k; products can
be made arbitrarily close by choosing large &'s (long BTP’s). This is analogous to
using fractions to approximate irrational numbers.

2.2.4 Phase

For a given BTP, the phase of a sequence is the elapsed time from the stast of the
BTP to the initial discrete event of the sequence. By convention, every sequence
starts with a discrete event. The key sequence phase is defined to be zero so all
phases are unique,

Let T; be the period of the key sequence and T, be the period of some other
sequence: “z". If Tiky # Tk, phase for saquence “z" will be different in successive
BTP's. If sequence “i" and sequence “z" are asynchronous, then 2 is irrational
and sequence ‘x’ has a different phase in every BTP. Finally, if % is irrational, the
phase of sequence “z" is assumed to be uniformly distributed on {0 T:) whean all
future BTP's are considered.

Figure 2.3 illustrates these ideas for the two-sequence case where Ty = x, Tj == 1,
ky = 1, and k3 = 3. The phase of the asynchronous sequence is . Note that cach
BTP has a unique 7 and each 7 uniquely defines the subsequent 7.

e ®

Y -
ol

2R @ P

2.3. Sample Rate Considerations 11

Ty T,

time

Sample Sequence No. 1 (T} = 7)
2 2 2 2 2 2 2

t—- T3 T, T; — T, Tg T —‘1

time
Sample Sequence No. 2 (T3 = 1)
X X X
2 BTP=r - BTP=r ?
r =0.20 T =0.06
1y 2 2 L 2 2 1
S I Bt R
i time

Composite Sample Sequence

Figure 2.3: Asynchronous BTP and Phase

2.2.5 BTP Segments and Events

Each BTP consists of poriods of continuous state propagation separated by discrete
state updates (e.g. sample-and-hold updates). Each period of continuous stiste
propagation with constant discrete statcs is called a seguent. Each discrete state
(z, or 4) update is called on event,

2.3 Sample Rate Considerations

Many current designs use high sample rates. Such sample rotes ave much higher
than the minitum rates needed to satisfy performance specifications. ln somie cases
(such as manual control systems) other considerations mandate high rates. In other
caser, good performance can be achioved with lower sample rates.

One reason for using high sample trates is that a fast digital controller closely
approximates a continuous controller. The error between a true analog controller
and the digital approximation is, effectively, process noise. Consequently, any robust

g

)

o, i2 Chapter 2. Problem Description

B

&)

\“; analog design can be simulated by a digital controller with higk cample rates. Also,

' the asynchronous sampling issue can be safely ignored because all control loops
i are essentially continuous (with process noise) and asynchrony is a discrete-time

| 'ff‘ phenomenon.

AN High sample rates have drawbacks. The most obvious is the cost and complexity

X of fast control computers, fast analog/digital converters, and wide-band data paths.

= \\ Roundoff error accurmulation can be a subtle problem, particularly if complex pro-
e cessing is used. Finally, considerable filtering may be needed to estimate rate infor-
: E:: mation because the parameter change between measurements is small compared to
:',:;: roundoff error (high noise to signal ratio).
.,"'_»'it"‘:‘ s .
NENT High sample rates may require higher analog/digital conversion precision to

control roundoff accumulation and to reduce process noise correlation time. This
' combination of high data rates and long data words compounds the hardware per-

formance requirements.

2.4 Limitations of Existing Design Methods

Highlights of several representative multirate design methods will be reviewed with
emphasis on the limitations, desigu difficulty, and implementation difficulty.

2.4.1 Ad Hoc Approeaches

First, here are several common ad hoc approaches. These “methods” often work
(i.e. produce acceptable performance) when the sample rate is high, but they lack
a rigorous theoretical foundation. These methods tend to break down when slow
sampling is used and when the different sampiv rates are nearly equal. These are
not true design methods. They are actually methods of approximating the multirate
problem as a series of single-rate approximations which can solved by existing single
rate methods. The design difficulty and controller complexity are determined by
the underlying single-rate method.

S ARk rodie dd s eULUAAA R AT RS AN UMM LA LSS SR R A A AR LA A AR M N XU O MM L NV N N W LA B

2.4. Limitations of Existirg Design Methods 13

Discretized Analog Design

This approach starts with a design for a satisfactory analog controller. Then, a
“digital 2quivalent” design is obtainel from the analog controller design (typically
by one of the methods in [FP80]). This approach can always be used and cross-
coupling may be exploited to advantage (if the analog design method has this prop-
erly). However, the resulting controller may ve unsatisfactory. In fact, it is easy to
construct simple examples where adequate analog controllers have unstable digital

equivalents.

One Loop at a Time

This approach requires the designer to associate groups of outputs with groups of

e

o

(R

inputs according to the plant modes they affect. To illustrate, the fastest modes

e

are identified along with inputs that can control those modes and outputs where

-
-

5 5P -{ﬁﬁt

2
i

those modes are observable. Then, a single rate controller is designed for this
input/output/mode group using some standard single rate method. The controller

>
7

A
. 1:
?
y
3

for the fast inner loop now becomes part of the plant and the process continues
until all loops are closed and all modes are contro)led.

2SNl

AL

=
:

- -
-
X

If all sample rates are integer multiples of the next slower sample rate and all
samplers are synchronized, this is the exact one loop at a time method discussed in
the next section. Otherwise, analog approximations of each succeeding controller
must be used to define each “new” analog plant containing embedded digital innes-
loop conirollers.

This method is very general and can always be used. However, the best group-
ing of inputs and outputs may be unclear. Furthermore, coupling between mode
controls is one-way in the sense that slow modes are designed considering the fast
modes (which are now part of the plant) but not vice- versa. Consequently, the
fast modes may not compensate for shortcomings in the slow modes. Finally, the
assumption that the fast inner loops are “almost continuous” is valid only if each
inner lcop sample vate is much faster t} an the next outer loop. In short, the resuli-
ing design may work well or it may be unstable; simulations are nveded to validate

B
C ii- ‘. ’ . .
' ,',’i:::i 14 Chapter 2. Problem Description
N “'(:t: \
‘ REM
I O
;:’,55;: the results.
. "::(‘g‘
Ty
. '..'. ;
' *‘:9:'. Singular Perturbation Method
i)
. O : . . .
‘ j:i;::: The singular perturbation concept for ignoring minor effects lias been rigorously
B }3:23: studied [Kok84]. The method discussed here employs the general singular pertur-
(]
e bation idea without rigorous analysis.
{ i This is similar to the “one loop at a time method” but in the reverse order. The

fast modes should be much faster then the slow modes, If the fast modes are well
controlled (closed loop) then the fast modes can be assumed in constant equilibriuwa
with the slow modes when the slow modes are analyzed. Conversely, the slow modes
are assumed constant when the fast modes are being analyzed. Stated another way,
the fast mode transient dies so quickly that the slow modes do not respond to it;
hence, the mode groups are effectively decoupled.

This method designs the slow controller first based on the assumption that the
fast modes are in constant equilibrium. Then a fast controller is designed based on
the partially closed-loop system including the slow controller, For the sampled data
case, the fast controller is designed assuming the slow modes (or the slow controls
at least) are constant. This is clearly an approximation in the discrete-time case.

The advantages and disadventages of this method are essentially the same as
for the one loop at a time method except that the cross coupling is reversed. This
reversal is usually good since fast modes are better able to compensate errors in
slow modes than the other way around. The approach is limited to cases where the
plant modes are well separated in frequency.

2.4.2 Exact Methods

These methods are rigorous for true lumped, linear time-invariant plants. Hence,
controllers designed with these methods should perform as predicted (except for
plant model error). However, all these methods are limited to the synchronous

sampling case.

T S et m AR et ot L LM L L0 L A A AL A LT Tt O R Y T L W 1A L PN 1% P LAY A Y L A S L L UL

2.4. Limitations of Existing Design Methods 15

One Loop at a Time

This method, discussed earlier, becomes exact when each sample rate is an integer
multiple of the next slower rate and the samplers are synchronized. In this special
case, the continuous plant can be transformed into a true discrete equivalent model
and the design can be done entirely in the Z-domain. All the earlier comments con-
cerning this method apply except the model becomes exact (analog approximation
is eliminated) and the sample rates must be synchronized integer multiples. The
design difficulty and controller complexity are determined by the method used to

design each loop.

Frequency Domain Methods

The original multirate methods were the Switch Decomposition technique of Kranc
[Kra57] and Frequency Decomposition technique of Sklansky [SR55]. Jury [Jur68]
later showed these techniques to be equivalent.

Switch Decomposition For synchronous sampling, the sample process repeats
each BTP. The switch decomposition formulation uses samplers which all operate
simultaneously at the BTP rate with advances (exp(sT;)) and delays (exp(—sT;)) to
shift the sample time and the control output times to the appropriate points within
the BTP.

This is an exact analysis technique for synchronous multirate systems. It is
primarily an analysis method. Therefore, it gives little guidance for choosing the
controller structure or gains in the multi-input/multi-output case.

Frequency Decomposition The frequency decomposition method can be ap-
plied when all sample periods are integer multiples of some short time period. Dis-
crete equivalents (7'(z,)) of the continuous transfer functions are developed for
sampling at the short time period. Then T(z¥) represents the discrete transfer
function for a slower sampler with period “k” times the short time period.

This too is an exact analysis technique for synchronous multirate systems. Like
switch decomposition, it gives little guidance for choosing the controller structure

16 Chapter 2. Problem Description

or gains in the multi-input/multi-output case.

Time Domain Methods

Optimal Synthesis Severalinvestigators including Amit [Ami80], Glasson [GB79),
and Lennartson [Len86] have devised different ways to solve this problem. This is
an optimal regulator problem where state feedback gains are found to minimize a
scalar cost function. The cost function is a standard Linear Quadratic Regulator
(LQR) cost integral. The solution is found from solving the resulting time-varying
periodic Riccati Equation. The resulting gains are periodic but different for each
segment of the BTP.

Controllers designed by this approach should exhibit the harmonious control
blending and robustness characteristics of other optimal regulators. Furthermore,
the design process is automatic once the weights and process noise are specified.
Recent work [Len86] claims efficient methods to solve the time-varying Riccati Equa-
tion.

The approach is limited to synchronous systems. Also, measurements of all
states must be available. Finally, the resulting controller is relatively complex since
it must schedule different gains for each segment in the Basic Time Period.

Constrained Optimal Synthesis Berg [Ber86] developed this approach to gen-
eralize the optimal synthesis design method. The same cost function is used; how-
ever, the designer specifies the form of the controller. The optimal gains for the
specified controller structure are found by numerical optimization.

This method has many of the advantages of the Optimal Synthesis method
with the added advantage of handling a variety of control structures. Hence, simple
controllers with fixed gains and partial state feedback and controllers with dynamics
can also be considered.

The method is limited to synchronous sampling. The added flexibility requires
the designer to guess the best controller structure. Finally, the gradient search
for optimal control coefficients (particularly in the original implementation) can be
computationally intensive and requires frequent designer intervention to fine-tune

2.4, Limitations of Existing Design Methods 17

the convergence process.

2.4.3 Common Limitations

All of the exact methods require synchronous sampling. None of the methods have
objective criteria for optimal sample rate selection. Only the Optimal Synthesis
methods addressed finite word-length (quantization and roundoff error) and plant
uncertainties (design robustness) by including process noise. None of the methods
directly addressed system integrity with respect to failures.

Chapter 3

Definitions, Conventions, and

Notation

This section addresses a variety of background items, definitions, and notation that
provide a foundation for subsequent chapters. The system description nomenclature
parallels the corresponding variables in the PC-MATLAB code (Appendix E).

3.1 Synchronous Sampling

Consider a system with n periodic sampling processes with periods Ty, Ty, ... Ty,
If there exist a set of positive integers {ky, k3, ..., kn} such that

lel = Takg Soeee Tnkm (3.1)

then the.system is synchronous and periodic with period T;k;.

3.2 Basic Time Period

3.2.1 Synchronous Basic Time Period

A unique basic tiine period (BTP) for synchronous systems is defined as Tik; where
{T\, Ta, ... T} and {ky, ka, ...k} satisfy Equation 3.1 and {ky, k3, ...ks} have o
common factors.

19

20 Chapter 3. Deflnitions, Conventions, and Notation

For synchronous sampling, the BTP is unique. A synchronous BTP is the short-
est period such that the discrete event sequence is the same for all BTP’s, The state

transition matrix is the same for all synchronous BTP’s,

3.2.2 Asynchronous Basic Time Period

A non-unique basic time period (BTP) for asynchronous systems is defined as T;k;
where the designer selected a set of positive integers {ky, k3, ...k,} such that:

T1k1 = Tgkg e RS Tnkn.

Also, the i’th sample sequence is defined as the key sequence (since the BTP is
keyed to that sequence).

For asynchronous sampling, the designer specifies the BTP. The asynchronous
BTP is not unique. The sequence and timing of the discrete events is never ezactly
the same for any two BTP’s; however, the discrete event sequence end timing is
nearly the same for each pair of sequential BTP’s. The key sequence is always
synchronized with the BTP.

3.2.3 Sequence Phasing

The phase () of a sequence is defined as the elapsed time from the start of a BTP
to the initial discrete event of the sequence. Defining key sequence phase to be zero
makes the other phases unique. Figure 3.1 illustrates this concept.

Let T; be the period of the key sample sequence and T’ be the period of some
other sequence. Observe that phase for sequence “x” will be different in subsequent
BTP’s unless Tik; = Tk, Furthermore, if the ratio T, to T} is irrational, then
sequence “x" will have a different phase in every BTP. Finally, this phase is assumed
to be uniformly distributed on [0 T,) when sampling is asynchronous.

For a given BTP, the sequence and timing of the discrete events is uniquely
described by a vector of phase times (one component for cach sample sequence).
By convention, the phase time for the key sequence is always zero. Hence, if there
are n, sample sequences, there are n, phase times but one of these is zero.

3.3. Kalman-Bertram Representation 21

1 1 1
T
—~ time
Key Sequence
BTP
r
— Ty —
2 2 2 2 2 2 2
] I ‘ 1 I] ~— time
Other Sequence

Figure 3.1: Phase Concept

3.3 Kalman-Bertram Representation

In [KB59)], Kalman and Bertram present a systematic way to construct the state
transition matrix (STM) for an arbitrary hybrid analog/digital system over an ar-
bitrary time period. Part of their approach, which is used in this paper, will be
summarized here.

3.3.1 The State Vector

The state vector hns three parts: continuous states, sample states, and discrete
states. If the system were represented as a block diagram composed of integrators,
sample-n.hd-hold elements, and discrete delay elements, the integrator outputs are
continuous states, the sample-and-hold outputs are sample states, and the delay el-
ement outputs arc discrete states. Figure 3.2 represents the general hybrid system
where all paths represent vector quantities. Integrator inputs can orly be con-
nected (through gains) to integrator outputs and sample-and-hold outputs because
delay-element outputs are undefined between discrete events, The equations for the
samplers include the usual continuous output and feedforward matrices (“C" and
“D"). Also, the sampler equations must avoid any algebraic loops or the problem

22 Chapter 3. Definitions, Conventions, and Notation

will be ill posed. These three types of states represent all the memory in the system.

Hence, the system state is:

Td

where: z. is a column vector of continuous states, z, is a column vector of sample

states, and 24 is a column vector of discrete states.

u“.,lp [Xc
A
SEH o= —5*— COMPUTER oo
Xs Xd

Figure 3.2: Block Diagram of Hybrid System

3.3.2 State Transition Matrices

There are two types of state transitions: continuous transitions and discrete tran-
sitions. Continuous transitions occur duting segments and discrete events occur
between segments.

3.3. Kalman-Bertram Representation 23

Continuous State Transitions

The continuous state transition can be computed for any time interval (At) contain-
ing no sample or discrete transitions. Assume the continuous state space description:
&, = Az, + Bu is known and note that u(t) = , which is constant during At. Use
the usual zero-order-hold continuous-to-discrete conversion (see [FP80] or [Kai80])

to obtain:

z.(to + At) = ¢(At)z(to) + T(At)u(to)
where ¢(At) = exp(AAt) and T(At) = [2* exp(As)B ds. Or:
z(to + At) = ¢(At)z(to) + T(At)z,(to).

Combining this with z,(t+ At) = Lz,(t,) and z4(to+ At) = Lijza(to), where I, and

I, are identity matrices of the correct size, yields the full state transition matrix:

¢(At) T(At) 0 || zc(to)
X(to+ At) = 0 I, 0 || z.(t) | = ®(A)X(L). (3.2)
0 0 Iy|| z4(to)

Given a fast and reliable matrix exponentiation routine [MVL78], a simple way
to find ¢(At) and I'(At) is given by [VL78]:

[¢(§t) r(;st)] e ([3 f;] At). (3.3)

Another form, useful in derivations is:

O(At) = exp

S S o

B o
0 o0 |At (3.4)
00

Sample State and Discrete State Transitions

Transition matrices for sample states can be found by inspection. For example,
suppose the sample event consists of sample and hold state “k" sampling state “m"
through a gain K, and state “n” through a gain K, (i.e. z4(t*) = Knzw(t™) +

24 Chapter 3. Definitions, Conventions, and Notation

K,z,(t7)). The corresponding state transition matrix is just an identity matrix

with the k’th row replaced by the row vector:
[0 i 0 Kp 0 - 0 K, 0 - 0]

where K, is in the m’th column and K, is in the n’th column.

Similarly, the discrete state transition matrices are obtained from the difference
equations by inserting the difference equation coefficients into the corresponding
rows of the transition matrix. The remaining rows of the matrix are the same as
an identity matrix.

The transition matrices for sample and discrete state transitions are essentially
similar and a single discrete-time transition often updates both sample states and
discrete states. The main reuason for differentiating between sample and discrete
states is that sample states control the continuous states. Therefore, the sample
states should be grouped together in the state vector so the columns of T' stay
together.

3.3.3 BTP State Transition Matrix

Given the discrete transition matrices (D, D3, ..., Dy), A, and B, a state transition
matrix for a BTP can be constructed for any specified sequence of events. To
illustrate, suppose the BTP begins with a discrete event of type 1, followed by
clapsed time ¢, followed by a discrete event of type 2, and finally an clapsed time
ta, completing the BTP (see Figure 3.3). The corresponding state transition matrix
for this sequence is simply:

¥ = &(t;)Dy®(t,) D

3.4 Asynchronous System Description

We need a precise and compact notation to describe a hybrid (analog and discrete)
system with arbitrary periodic sampling. The notation shown here parallels the PC-
MATLAB code in Appendix E. The continuous-time (analog) part of the system is

3.4. Asynchronous System Description 25

BTP -
D1 D2 D1

time

Figure 3.3: Event Timeline lllustration

completely specified by the A and B matrices of the matrix differential equation:
2. = Az.+ Bz,. The columns of B are arranged so they are in one-to-one correspon-
dence with the sample-and hold states. For example, a duplicate column is added
for a particular input if two separate sample states drive the input. Conversely,
columns for two different iaputs might be summed into a single column if one hold
state drives two inputs. For computational simplicity, A and B can be stored as a
single square array (zero-filled ut the bottom):
AB = [A4 B]

0 0

Thus the full analog transition matrix can be evaluated as;

oy = AP 0 |

Each sample schedule is finite and periodic so there are only a finite nunber
of differcnt discrete time transitions. In practice, discrete transitions often update
both sample and discrete states, so no distinction is made between discrete-time
transitions that update sample states and discrete-time transitions that update
discrete states. The discrete transitions are numbered arbitrasily and the full state
transition matrices can be stored as DS, a row of square block arrays:

DS"—‘[D; Dg voa D,.].

The sample sequences are defined by a rectangular “sequence pointer” array
which has a row for each sample sequence and cnough colummns to describe the

T -
i 2
*". -._ e

26 Chapter 3. Definitions, Conventions, and Notation
D1 D2 D1 D2 D1 D2
0.1 0.4
| | done
Firsi Sequence
D3 D3 D3 D3 D3 D3
oo (), 3 —+f
B I N S S
Key Sequence

Figure 3.4: Timeline Illustration

longest sequence. Negative integers indicate discrete transitions defined by the cor-
responding block of the DS array. Non-negative real numbers indicate the duration
of continuous-time transitions. When some sequences are longer than others, rows of
the short sequences are filled with zeros (indicating a continuous trausition for zero

clapsed time: i.e. no transition). By convention, the first event in every sequence

is a discrete event. To illustrate, consider the sequences sketched in Figure 3.4
described by the sequence pointer: '

-1 01 -2 04
-3 03 0 0|

seyptr = [

This array indicates two simultancous sequences. The first sequence has period 0.5
and consists of discrete event 1 followed by discrete event 2 after a delay of 0.1.
The second sequence is just discrete event 3 repeated with period 0.3. Dased on the
preceding BTP discussion, this is a synchronous systems with BTP=1.5.

3.5 Cost Function

A generalized Linear Quadratic Regulator (LQR) cost function is used in the design
method. Oune would expect that the resulting designs share the desirable robust

ool

3.5. Cost Function 27

properties of the LQR.

The cost function in [Ber86] was:

Te -~
. 1 (NPT z(3) Q) 0 z(t)
TN =B N BT o {u(t)] [0 R(t)Hu(t)]dt ’

where PT is the BTP, E{-} is the expected value operator, and Q and R are designer-
specified weighting matrices. The initial state covariance was zero (E{z(0)z7(0) =
0}) and the analog process noise had covariance W(t). If @, R, and W are either
constant or periodic with period=BTF (as in [Ber86)), then as N — oo this cost
becomes the steady-state mean square state error and control effort weighted by Q

and R. In the limit, this is exactly equivalent to

T ~ .
. PT
FoE _L_/ at) | Q@) 0 ()] ,
2PT Jo | u(t) 0 R() || u@
if the process aoise begins at ¢t = ~co. In this case, E{z(0)z7(0)} is a steady state
value at BTP start, not zero.

For the formulation in this paper, controls and states are combined in a single

state vector. The above cost function is generalized to:

1 BTP a:c(t) T Wy Wy 0 .'Ec(t)
J = E SHTP Jo z,(t) Wy Wy W || a,(t) |dt
a:d'(t) 0 W3z Wiaa md(t)
- Bl oprp [XOFIRXONL), (39

where W, is a positive semi-definite cost weighting matrix specified by the designer.
If state errors are equally serious throughout the BTP, a constant Wy is not a
significant limitation. Choosing non-zero values for ws; and w;s makes the cost
computation significantly more difficult. There is no apparent reason to specify non-
zero values for wa; and w3, so they are zero by convention and the PC-MATLAB
computer codes in Appendix E do not include contributions from wj; and wa.
Conversely, non-zero values for was, w2, and wq; can be used to avoid saturation

28 Chapter 2. Definitions, Conventions, and Notation

and limits. Observe that wy; = P and wgg = Q so this formulation is exactly the
same as [Ber86] when the other w;; terms are zero. Finally, wq,; should be positive
definite to insure that infinite control commands are not allowed.

3.6 Process Noise

The process noise used here is also an extension of the continuous process noise

used in [Ber86]. The process noise covariance is described by:

2 0 0

0 _ 0 .9
X'=1 0 x5 25,
0 .0

0 25 3

where 29, = E{w(t)wT(#)} is the continuous process noise covariance. This is the
same as the process noise in [Ber86] when w(t) is stationary. The other terms:
3y, 35, T3, and 3, are discrete process noises covariances which are added to the
state error covariance whenever the corresponding states are updated. To illustrate,
suppose that state i, a sample state, and state j, a discrete state, are updated
simultzneously by the same discrete state transition matrix; then, X°(i,i), X°(j, 5),
X3(i,7), and X°(j,1) are added to the coiresponding elements of the state error
covariance matrix when the transition occurs. These additional terms can be used
to specify digital measurement noise since all sampled measuremeats immediately
beconie discrete or sample states.

3.7 Cost Ft_mctiori Scope

Before continuing, note that this extended cost function is quite general. The
treditional Linear Quadratic Gaussian (LQG) cost function, with process noise and
measurement noise, is fully accommodated within the framework of the extended

cost function. Equivalent process noise {in the z, and 2,) can be found from discrete
measurement noise. Hence, this formulation will accomplish LQG design if the
controller structure is an observer with state feedback. '

3.7. Cost Function Scope 29

o In addition, the off-diagonal Wy blocks allow penalties that can be used to avoid
1,:;:? state and control limits. For example, suppose state j is limited and &; = =4 where
Ol 2x is a hold state (i.e. a control), then Wo(j, k) > O penalizes control that pushes

') z; toward the limit, particularly when «; is large. The w3 block can be used in a

e similar way to avoid control limits.

oA
P
-

@ aL
,;"

]
x
ot e

e
o

e d

ot

S

"
s o
=

‘ﬂ’.i X .\‘:A.‘nl‘;\“.l“ D, \‘l-‘l“‘.. " ek ’,l‘!"- \.‘a}-(“!‘ld‘t“ !wdﬁﬁ!.ﬂf‘;. ANN ?c !.I'i'ili "ﬁ:‘.‘:‘!“.. Q‘df’dfi‘

"§§¥ iﬁq'ﬁq 35y
RN

30 Chapter 3. Definitions, Conventions, and Notation

b I T TS LA AL £ NS KT T M O L I A IR W W A A M B AZOUCRAN WY N RS AN AT WA M i)

Chapter 4
Asynchronous Stability Condition

This chapter develops the sufficient stability condition for an asynchronous sampled
data system. Specifically, if the sum of two integrals is negative, the system is stable
on the average. Furthermore, this sum defines an upper bound on the exponential
decay constant for the average state error decay rate. An analogous figure of merit
for linear, time invariant continuous systems is a rightmost bound on the pole lo-
cations in the s-plane. Finally, plots of the two integrands show how stability is
influenced by asynchrony and phasing. Hence, the approach is also useful for syn-
chronous systems with unknown phase. Although the method is applicable to any
number of asynchronous sample schedules, a simple two-schedule (one asynchronous
schedule) version is derived and used for the examples in the next chapter. The
main limitation is that the closed-loop BTP state transition matrix (STM) must be
diagonalizable.

4.1 Stability Definition

Consider a lincar, time-varying system with a state vector #(¢) and a state transition
matrix ¥(ty,to) such that z(ty) = ¥(ty,t0)z(t).
A necessary and sufficient condition for global asymptotic stability is:

Jim, (E(t7, 1)) — 0, for all tg (4.1)

31

32 Chapter 4. Asynchronous Stability Condition

where 7(-) denotes the maximum singular value of a matrix. This stability definition
will be used throughout this paper. Note that this says that each element in ¥(oo, tg)

must be zero.

4.2 Factors of ¥

For reasons that will be apparent later, ¥ will first be factored in a certain way.
Divide the interval [tg,t] into finite segments [t,,tn-1,..., [t2, t1], [t1, 0] such
that n — oo as ¢; — oo. Then, ¥(t4,1,) in Equation 4.1 can be factored as

Uty to) = Ualpye Tyl

where ¥, is defined as W(#,t-1). Later, these intervals will be set to the “basic
time period” (BTP).

When the individual ¥,’s are diagonalizable (not defective) each ¥, can be
factored (¥ = SiArS;') where A is a diagonal matrix of eigenvalues and S is a
matrix of eigenvectors. Then ¥(y,o) can be expanded:

(b, t0) = SalnSy ' SnetAna1 Sy <S3A255 1S AL ST

M= xf"‘/;

where X is the spectral radius of A; or ¥;. Now:

Finally, factor each

e .‘I’k‘I’b-]. e = QSbAkS;lSk—lAk-lSk__‘1o ..

where: A = ‘/A"S""S,,_ ‘/[:"" (4.2)
k-1

So, W(t;,%) can be rewritten in factored form as:

\I'(t,, to) = S.." %—"-'X.‘A..'X,._,A.-y * J‘;:A:X: J—%IS;‘ (4‘3)
n 1

¢¢¢¢¢

4.3. General Sufficient Condition 33

4.3 General Sufficient Condition
Recalling that &(:) is a scalar consider an equivalent form for Equation 4.1:
Jim F(U(t7,) = 0. &= Hm [F(Fn Ty L8] <1

Furthermore
F(VpWpy P ¥y) <

E(Sn %" .Xnﬁ(An)Xn—lﬁ(An—l)' * '-X2F(A2):_1E(w %l ;1) N
1

n

Therefore a sufficient stability condition is:

L
nli.r{% [-&-(Sn ‘1%2 Xna(An)-Xn—lﬁ(An—l)‘ * "XQE(Az)XIF(\’ ‘IX}'LS[)] <. 1. (4-4)
1

n

Suppose we define bounds); and o; and the A's and X's are dividcd into classes
such that (A) < o; for all the A’s in class “i" and X(¥) < A; for all X(¥)’s in class
“i". Also, for any sequence length n let n; be the number of A’s in class “i” and let

n; be the number of A’s in class “j". Then

- i
[3(3,.‘/52)X"E(A,,)Z\',._la'(A.._‘)o‘.XQH(A;')},E(\/ES,)] -
xn . xl

[7{swy/ %) dTma a(A;))a*(@s,))]% <

k=1 k=3

[F(Su\/%g)r]:[m%g.&:}[ﬁ(‘ [%-S‘)]k

In taking the limit as n -+ oo, the first and last terms (assumed finite) go to

o
z

. -t > N L . Lt . R) .
3, > e PR S e G g e o
el oo P e PR A L d
s X! B Tl el e = o ;
e _ 1 : 3 o & : , ;

®

k)

e
".-J»‘

f
i

-
-
o5

unity so a sufficient stability condition becomes:

Jim [To % TIA™ = o [TA™ <1 (4.5)
] k)) J

where p,; aud py; are the probability of cccurrence of etate transition matrices with
A in closs § and X in clas: j respectively.

34 Chapter 4. Asynchronous Stability Condition

4.4 Asynchronous Multirate Stability

Now, apply Equation 4.5 to the asynchronous multirate problem. Let each [t;, ti_,]
interval be a basic time period (BTP) and use rectangles in phase space to partition
the A’s and X's into classes.

Assume that the phase for all BTP’s from ¢ = 0 to ¢ = oo is uniformly dis-
tributed. Then, the probability of occurrence of an STM in a given class is equal
to the size of the phase space rectangle divided by the size of the total phase space.

Let 7 be the phase vector that uniquely defines the BTP state transition matrix.
Then, for the k’th component, 7, € [0,T}), where T; is the period of the k'th
sequence (a non-synchronous sample sequence). Assume the 7,’s are independent.
Then, the probability of occurrence of a sequence with 7, € [t1, %3] is just]9-1:.‘31
assuming 0 < ty,t, < T:.

If we take the natural logarithm of Equation 4.5 we get

},:Pm' log(a;) + ZP«\J' log(};) <0, (4.6)

another form of the sufficient stabilit& condition.

Suppose we divide the A's and #(¥)'s into classes based on rectangles (inr
space) of size dr. Say the i'th class is defined as all state transition matrices with
T € [Ty T +dr), 74 € [raa, T + dT), ... Ty € [Tiny Tin + dr).

Now, Equation 4.6 can be expressed as sums over the coordinate indices (1 ++5):

-—‘g—"-:-r-: (}nj . :‘f Iog(a.‘...j)) + mg-:r:—m (ﬁi . i": log(Aa...j)) <0 (4.7)

=1 gml iml 45 \jml jen

where:

n = number of asynchronous samplers,

n, :g&'v

Aiej = sup(M¥(7))), 1 € (4 = 1)dr,idr), --- 7, € [(j — 1)d7, jdr}, and

0i.; = sup(F(A(r))), 1 € [(§ = 1)dr,idr), .-+ 7y € [(j ~ 1)dr, jdr].

0 R 0 LR P U L PR £ P T T P L L 1 A S P 100 L ST) e Lummmmmmnimmmmmxmmmmmnmmm

4.5. Eigenvector Scaling 35

In the limit as dr — 0, the sums in Equation 4.6 become integrals:

1 T ¢Tn _ |
0 T /,,) (log(@(A(r)) + log(A(¥(r)))) dry- - -dra < 0.~ (48)

g

Also, define o* = B"To},. The significance of o* will be discussed later.

4.4.1 An Important Special Case

Finally, consider the special case with only one asynchronous sampler. Then, 7

becomes a scalar and Equation 4.8 becomes:

o°= 51,- / :0 log(7(A(r)) dr + % / :o log(N(¥(r)) dr < 0. (4.9)

This form will be used for the sample cases later in this paper.

4.5 Eigenvector Scaling

The eigenvector matrix (S) needed in the “A” calculation is not unique. In fact,
the choice of eigenvectors changes o(7). Ideally, the length of the eigenvectors in
S would be selected to minimize o(r) and reduce the conservative nature of the
vesults. The best S’ (which minimizes o(r)) is not obvious. Numerical stability is
another consideration. We can improve the numericel properties by choosing S in
balanced modal form such that the norms of the columns of § are the same as the
norms of the corresponding rows of $~!. In some of the example cases, the balanced
modal form improved the condition number of § (and S™!) significantly compared
to choosing eigenvectors of unit length. This balanced modal decomposition was
implemented in the computer codes in Appendix E. In most cases, the result (o%)
was less conservative than results with unit eigenvectors.

4.6 Analysis of Result

Before leaving this topic, consider the significance of the Equation 4.8. Comparing
this with Equations 4.4 and 4.5 one can conclude that, in soine average fashion,

e . N - N R . § y " §
AR Y 1t AR NEARREDN AN RN AN N AR AR AN NA R R R AN a0 08 P S M 1% 0%t 0 1 1% % B UMM AL SO LAY LN LSS LA AL S 1A

36 Chapter 4. Asynchronous Stability Condition

log(7(¥(to + BT P, t))) < o°. Hence, if X, is some initial state and X is the state
one BTP later, then on the average, || Xa]| < || Xo| exp(c®). Hence, o° is like a
maximum (conservative bound) decay constant for one BTP.

The term “average” was used loosely in this discussion since it actually indicates
a multiplicative average. To be more precise, if the initial state error is X(0),
then the residual error || X(t)|| will be less than ||X(0)|| exp(o*t) for most values of
t € [0,00). So, o* can be thought of as an average worst case (conservative) decay
constant per unit time,

Now consider the integrands of Equations 4.8 and 4.9. The BTP STM is an
analytic function of phase except at a finite number of points (see Appendix C).
Hence, the A;’s and A’s are continuous functions of 7 except at a few known values.

Therefore, the integrals can be computed numerically without difficulty.

Plots of the integrands of Equation 4.9 versus 7 give substantial insight into
the system behavior. If a system were actually synchronous with random phase,
log A('¥(7)) must actually be negative for all 7 for guaranteed stability. Thus, a
plot of log A(¥(7)) versus 7 shows how sequence phasing influences the stability of
a synchronous system. Similaxly, a plot of log @(A(7)) versus T shows the possible
destabilizing effect of asynchronous sampling. Together, these plots show the rel-
ative stability contributions of transitions over the BTP (if repeated indefinitely)
and the mismatch in going from one BTP to the next. If the mismatch is too
destabilizing, longer BTP's (closer to synchronous) can be used to get a “sharper”
sufficient stability criterion.

To illustrate, consider Figures 4.1 and 4.2, Figure 4.1 represents a synchronous
system. For synchronous systems at the synchronous BTP, log#(A(r)) = 0 for
all phase values. The system is stable for some values of phasing (where log(X)
is negative) but not for others. If Figuve 4.1 represented an asynchronous system,
the system would be stable overall (area below curve is greater than area above)
but the errors would grow during some BTP's. Such behavior may be acceptable
if these “unstable” BTP’s are mixed with stable BTP’s. Conversely, if there are
many “unstable” BTP's in a row, the behavior is probably unacceptable. Figure 4.2
represents a stable asynchronous system. The stability of the A exceeds the worst

4.6, Analysis of Result 37

A 8.2 N e e e N A e o e B A S
M 1 —1log (Lambda) 1
-log (sigma)

log (Lambdo) R log(sigma)
e

°
. ‘6.2 T Y v T T T ¥ Y T T T T Y T L4 ¥ \d T T

;,&5;}) 8.2 @.4 @.6 ¥.8 1
100 A3ynchronous Sequence Phase, sec.

M4 Figure 4.1: Synchronous Stability Plot, Nominal Gains.

; : possible destabilizing effect of o (the BTP mismatch). Interestingly, a similar syn-
:ﬁ; chronous system is only stable for some r values.

One should not equate large negative values of o* with good performance. For
- example, lightly damped estimator error states can be perfectly acceptable when
' ;}‘y measurement noise is small. Increasing the damping for some state errors may only
reduce damping of the ouiput errors. Therefore, o* should only be used to assess
L stability, not performance.

b The next Chapter applies these stability concepts 1o a simple system. For the
o remainder of this report, the following notational abbreviations will be used:

tF, A7) = X(¥(r)), and

i ofr) = (A(7)).

--:;'fﬂ This yields a more compact notation and emphasizes the functional relationship
LY between A(-), o(-), and 7.

S e N AN s L h

38

A Ak AR ek e R ALV AR M e MR A A ek A A e b e A e i e v M A e et A ek A KAl At B

£ log(sigma)

log (Lambda)

.
()
-

—

0.2

Figure 4.2: Asynchronous Stability Plot, Nominal Gains.

Chapter 4. Asynchronous Stability Condition

¥ L] L] ‘ ¥ A J v l L] 1 T ‘ L 4 v L] l Al L4 ¥ ‘ L
. —log (Lambda) 1
1 -log(sigma)]
;

4 ~ ot
’ -
1| w
- ~ 1
1 T
h b
L] T '—I R i v ' ¥ ¥ v I T v v l v L v l v

e a.2 2.4 0.6 8.8 1

Asynchronoue Sequence Phose., vec.

A ke R AN o e A2 A A A e S i) O 4 dheat el A e o @ ey At R ekt e Ak kel

Chapter 5
Stability Examples

This chapter applies the sufficient stability condition to a simple double integrator
plant. The results illustrate various stability considerations using this very simple
example.

5.1 The System

The system consists of a double integrator plant with digital position feedback
and a crude digital rate feedback (See Figure 5.1). The position and rate feedback
repregent two coupled but independent and possibly asynchronous sample processes,
With analog state feedback, the systern would be stable with any positive state
feedback geins. The asyunchronous digital system is fourth order and it is not so
well behaved '

The sample petiods are T1=T2=:1.0 for synchronous cases and T1=1, 'T2=0.9
for asynchronous cascs. The so-called asynchronous case is actually synchronous
with a Basic Time Period (BTP) of 9.0. However, all cases will Le analyzed with
BTP = 1.0. This fiction allows direct comparison with an exact analysis using the
true svuchronous BTP. ,

This idea of using asynchronous analysis and a short BTP for a synchronocus sys-
tem has merit. For example, suppose some system were synchronous with BTP=160
but we are interested in the response during a much shorter time (say 1). Then, it

39

°

30

v .

T I g

e

- al

P S

o 2 i S I s o 3 e 0 PG Do e o i T s e

S -

K e LS i -

&

40 Chapter 5. Stability Examples

X1 X2

Oeesten SEH o — 05

1’. X3 T1
rate
estimate
20 B! spr b <1 05
T2

Figure 5.1: Block Diagram for Example System

would be appropriate to analyze the systemn with a small BTP (near 1) to evaluate
the short-texm stability of the system.

5.2 Nominal Sampling

At the nominal condition, both samplers operate at one sample ner second. Fig-
ure 4.1 shows the stability condition (Equation 4.9) integrands versus plase for the
nominal gains and synchronous sampling. The o(A) term is unity so log o(A)=0 for
all phase values. The A terin varies with phase. The system is stable at phase condi-
tions greater than 0.28 and unstable for phase conditions less than 0.28. Therefore,
the stability depeuds on the phase relationships between the two samplers. This
is easy to vnderstand from Figure 5.1. When the rate sampler operates just after
the pusition sampler, the effective rate feedback gain is zero. As the rate sampler
delay (phase) increases, the effective rate foedback gain increases and so does the

B R A TN O KM M A KT AU R0

5.3. Asynchronous Sampling 41

stability until the delay exceeds a quarter of the natural period where the effective

rate feedback gain starts to decrease.

5.3 Asynchronous Sampling

5.3.1 Analysis for BTP=1

Now consider the case where the rate sampler is faster with a period of 0.9. Ana-
lyzing this configuration for the same BTP (1.0) gives o* = —0.031 and the curves
in Figure 4.2.

The A curve is identical to the synchronous case for 7 > 0.1. The events in
the asynchronous BTP are identical to the synchronous BTP whenever 7 is greater
than 0.1; but the asynchronous BTP coutains an extra rate sample when 7 is less
than 0.1.

Since the sampling is actually synchronous, phase () is not uniformly dis-
tributed. Actually, = cycles through a sequence of ten specific values (say 1.0,
0.9, 0.8, ...0.2, 0.1). If the exact phasing is known, the actual values can be aver-
aged. If the exact phasing is random, then o* is a good stability indicator for the
synchronous case if the analysis BTP is much shorter than the true BTP.

5.3.2 Analysis for Synchronous BTP (9.0)

In fact, the so-called usynchronous example is actually synchronous. We use this

fact to determine tle true stability. 7
Figure 5.2 shows stability integrands for the true BTP. Comparing with the

previous plot, we see the sufficient condition was congervative. This fact is, however,

magnified by the crude synchronous approximation (1 ~ 0.9). In actual practice,
much better BTP’s can be selected.

42 Chapter 5. Stability Examples

e
R
i
ey :i?g:
A
o '!.\ c.:i
P o c; g?
'-.'_"‘..‘l
4
- F ’\'f'_‘
.o \?’_ . ':';“ B . S LUNMES BEnis Sl MANIJANAS SN AN [N S Rk Sumiy RN IAARN 20 e Ay RIRSR T 1
‘ gﬁg 1 : ~log {Lambdno)
' lﬂ: 1 ~log(sigma)]
iy B E
. . :-’;"l: ° J N
N .‘;" g o
S ® 7 1
&;é'i <
G - A
S]]
o 8.5 1
3] 4
A . ’) .o
!g J 4
ST \//\/\/\/\\/\/\/\/\ -
o : ¥
o] _] C
9 -
. l .5 - e p—y ™ ¥ Ll PR Y £ — "“"‘F" ¥ MR { Y
e . e. 0.4 8.6 0.8)

Asyrzhroroud --Shqua‘n_co Phase, 9o,

Figure 5.2: Stability Plot, Nominal Guins, Long BTP

e
g
S —_—

’ 103 2Ky, WA WA RA D vay 199
B R o N st

[} 4 B L) ¥ 4 0.0 R
AN DR OMI N U N)

E e Chapter 6
Y Synchronous Design Method

"i.';;a‘ The overall design method is a gradient search to minimize a scalar cost function.

' ii: ! This chapter describes the cost function, the gradient, and the search algorithm for

‘,:} the synchronous sampling case wilh known phase. The next chapter extends the

P method to synchronous sampling with random phase and to the asynchronous case
At with varying phase.

“?. 6.1 Cost and Gradient

A Actually, two different cost functions are needed: one for an unstable system and
one for a stable system. The true cost function must approach infinity as the sys-
tem approaches instability because an unstable system is not acceptable (infinitely
Lo bad). However, initial guesses for the control gains may yield an unstable system.
| $o)ﬁg‘ Therefore, an elways finite, alternate cost function is used until stabilizing gains are
? K L found.

hE BN A Ideally, the cost function is an analytic function of the BTP STM. At a minimum,
e the cost should be a continuous function of the gains with a gradient defined almost
everywhere. Isolated gradient discontinuities are acceptable if the gradient search
o is not likely o encounter these points.

.. §§» 43

U o S G P T Y v P e U g L T R R Y e T1d TN e T LI T My T Sy T2 X

44 Chapter 6. Synchronous Design Method

6.1.1 Imitial Cost Function

The initial cost function must decrease as the system becomes more stable. An
obvious choice is the spectral radius of the BTP STM since stability and a spectral
radius less than one are equivalent. Unfortunately, the spectral radius gradient is
discontinuous when multiple eigenvalues are equidistant from the origin. This is a
serious flaw because a gradient search invariably encounters such conditions while

minimizing the spectral radius of a high order system.

The initial cost function chosen is a variation of the L™ norm of the eigenvalue
vector. The initial cost was defined as

L= 0008 (6.2)
i=1

where k is the order of the system, JA; is an eigenvalue of the STM, and n is some
even integer. As n increases, this cost function becomes equivalent to using the
spectral radius. Typically, larger values of n are better for higher order problems.
For the ninth-order two-link robot-arm problem, n = 4 and n = 8 both worked
well. The gradient of this cost is defined whenever partials of the eigenvalues exist.
Although the gradient is discontinuous at repeated roots, such points are rare and
caused no problems for the test cases.

6.1.2 Initial Gradient

The gradient of the initial cost is found by applying the chain rule to Equation 6.1:
' n k . ni e o\
L= EZ (ATA) T (ATA+ AN (6.2)

The cigenvalue derivative (i,-) is computed from ¥ and ¥ as described in Ap-
pendix A. Gradient components are computed separately for cach variable param-

eter in the coutroller,

ORI A KRR LA , .
T N T R TR e A A O KRR

6.1, Cost and Gradient 45

6.1.3 Main Cost Function

Once a stable system is obtained, the cost function, as introduced in Chapter 3, is

taken as:
~ 1 BTP T
7 = B [O WX @)t
T
1 BTP z(t) wy wg 0 z(t)
= E SETB Jo z4(t) wyr Wiz was || ,(t) | dt
z4(t) 0 wa was || za(t)

for a system disturbed by stationary white process noise for the infinite past.

Useful Theorems The following theorems will be used to develop the cost func-
tion expressions (see Appendix D for proofs):

Theorem 1 Let z,, be the partial state vector: [zT zT|T such that
&o, = [AB)zg, + ne,
where n,, is ¢ white, continuous process noise with covariance:

0
z;; 0

E{na(s)nf(t)} = [0 o

]6(s~t)=){g6(s—t)

where () s a unit impulse at zero.
If zz(t) = E{2,(t)z](t)} and there are no discrete transitions between ¢ = 0
and ¢ = ty, then

:m:(t.) = ¢(t;)I:B(O)(b(h)r + Ro(tl)
Where ¢(s) = exp(|{AB)s) and

R(t) = /o " 6(3)X2.6(3)7 ds. (6.3)

P DL LR T D AL o o X1 T LU 8T L R T 2 RV VR s o v p TAe vy o1 a - e N R TE 208 sV 3% 2F at) otk stk 2 d att o By ST Nttt gy

‘46 Chapter 6. Synchronous Design Method

Theorem 2 Let X = [zT 2T 2} be the full state vecior. Let ¥4 be a discrete state
transition matriz where

X(t*) = ¥ X(¢7) + na(t)

where ny(t) is white discrete process noise with covariance Ry.
If XX(t) = E{X(t) XT(t)} and the discrete transition ¥y occurs at time o,
then
XX(t3) = ¥a XX(t5) YT + Ra. (6.4)

Note: let Ry = [Rij]. Then R;; is zero unless ¥y updates state i or state j.
Theorem 3 Let X be the full state vector: [zF 2T 2]]T and

X =G(t)X + N(t).

Where G(2) is stable with a corresponding state transition matriz W(ty,t,). N(2) &8
white process noise and E{N(r)NT(s)} == 6(r — 3)Ra(s).

Let XX(t) = E{X()XT(1)}, to > t_y > t_g ++, and lim, .eo(ty) = —00.

Then if Ri = E{X(t:)XT(t;)} when E{X(t;.1)XT(4-1)} = 0 (i.e. the covari-
ance growth from t;_y to t;) then

XX(to) = 3 W(to, t) RVl).

=0

Theorem 4 Let X be the state vector: [x7 2T 2] suck that
X=GX+N

where G s constant and N is white, stationary process noise with covariance

z, 00
X'=10 00
0 00

Let XX(t;) = E{X(t:)X7(t,)} and Wy be a symmetric matriz,

T e e e e s AN T WY LA IR SR IS R T A AT U A YR AR LR I ST LA LA 1A

6.1. Cost and Gradient 47

If there are no discrete transitions between time= 0 and time=1, then
J(,0) = E{ / " XT(r) Wo X(r) dr}
- § (XX(O) «f B ()T Wo U(r) dr)
+ iz(xg* Ji ' [06y Wow(s) ds) (6.5)
o Jo

where: J(t,0) is the cost contribution for the segment (0,t), “” denotes element-by-

element matrizc multiplication, & denotes the algebraic sum of the matriz elements,

A BO
and U(t)=exp| | 0 0 0 |t].
0 00

Cost Calculation The BTP consists of continuous time segments separated by
discrete events. The discrete events do not contribute directly to the cost inte-
gral because they occur in zero time and the states are always finite. Hence, the
cost is ﬁ%—;g§=l J(t;, ti—y) where J(m,n) is defined in Theorem 4 and there are k

continuous segments in the BTP. Consider the second term in Theorem 4:

B(x0 Ji ' [\I’T(a)Wo\P(a)dsdr)

This term, which represents the cost contribution from the noise in the current
segment, does not depend on the discrete (DS) gains (the other term represents
the cost from all previous noise). For simplicity, this second term will be deleted
eatirely from the cost calculations. The rationale is:

e The value of the deleted term may be computed [VL78] but this is, by far,
the most difficult calculation and its value is slight, at most.

e Ifall the controls are digital (all adjustable gains in DS array), then the deleted
term is constant and it does not influence the gain optimizatioun.

o With some analog controls (adjustable gains in the AB array) the contribution
of this term will be small unless the fastest sample period is long compared
to the error decay time coustant {unlikely).

48 Chapter 6. Synchronous Design Method

Using this simplification, the cost can be approximated as:

1 T
2BTP § DX X(t:) / ()" Wo I(t)dt
or
2BTP EEXX(t) * @
where)
Q= /, ()T Wo (1) dt. (6.6)

Notice that Q; is always defined regardless of system stability.
The X X(t;) term can be expanded using Theorem 3:
i-1
XX(t:) = Vo X X(t0) %o + Z U R; T
J=1
where R; is the additional state covariance from the end of the j — 1’th segment to
the end of the j'th segment and ¥,,,, is the STM from the end of the n’th continuous
segment to the start of the m’th continuous segment and n = 0 indicates the start
of the BTP.
Then, the cost becomes:

1 [ER)
J—mzz(.oXX(to)W)*Q‘-‘.QBTPZE(?::IW”R) .,) Q..

Now, use the symumetric identity: fJ(T XiTHwX; = fJ(TT XiT) » X to extract
the X X(to) from the summation. The first term can be rewritten as:

1 - -y
TP [X.’L(to)*Z\I’ ol W,u] ZBTPEA)L(to)*WW
where -
WW = z W?DQ;W;O. (6.7)
i

Notice that WW is always defined.
Suppose the additional covariance from noise in the current BTP is accumulated
recursively in XX as follows:

e A e .t e y ; L TLIR PR TR SO AL P AR T TLAZ T N ACTEI A M I AT LW ATTE TR LN L A LN PN L

L))
:g:i:i 6.1. Cost and Gradient 49
)
g
%‘i"'b XXy =0,
e
AT
r %;E;: XX} = Uy XX VL + Wy (veference theorem 2), and
. (M)
1 .
: .:qj' XX; = UeX X} UL + [+ ®(t)Wo.B(t)T dt (see theorem 1).
- ’ i“li ’
4:‘""; _
Wty
.' ,;3;:‘! Where ¥, is the ¢’th continuous STM in the BTP, ¥,y is the subsequent discrete
E'.i.‘; STM, and there are k continuous segments in the BTP. The subscripts on X refer to
LAY
g;:‘:g the discrete events between continuous segments, and the (- +) superscripts indicate
RO
:%:’:: values just before and just after the indicated discrete events. These XX values
“:‘- will be used to simplify the cost expression. Note that the X X sequence can always
' 'g; be calculated.
= ' Combining these expressious gives:
:!g.‘.'. k
KN) 1 &
R J= ——8[XX(t) * WW]+ ~—=) LiXX}, «Q;l. 6.8
‘u‘; 2BTP [(0)*]+2BTP§ [-1 QI] ()
l"“ i
2:;;; Expressions for each of these terms have been defined excopt X X(f5) which is
‘%g' addressed now.
¥
3“' XX is the state covariance at the end of a BTP if the state is zero at the BTP
;ﬁé} : start. XX (#) is the steady state covariance at the start of the BTP if the system
f)

: %x{ has been excited by the process noise forever. Note that XX always exists but
g‘ X X(ty) only exists if the system is stable, If the system is unstable, the steady
‘ state covariance is infinite and the initial cost function must be used.

:%: For synchronous periodic sampling all BTP STM's (¥) are identical. Using
§;:§§ Theorem 3, the steady-state state covarionce at BTP start (E{X(2)X7(ty)}) can
§ é be found from XX and the BTP STM. When the BTP STM can be diagonalized,

o the infinite sum is solved in closed form, |

.li:{

¥ o0

:i ;: ;:00 ;
iy = Y wxx(v).

=0

:::‘ 50 Chapter 6. Synchronous Design Method

]

i s(fj A(5 XX 57H) (A”)‘) SH,

i=0

: & = s[(s-1 Xxs-")*(fj(]\‘f\")‘)]s".

i=

| Y — - ~ o (F_ XA H
2 = 8[(s7 xX §~H)« (I + (I - RA¥))]s™.
) Where:

7 S,A =matrices of the eigenvectors and eigenvalues of ¥ where A is diagonal and
e ¥ = PAP-,

-t\.,: A is a column vector of the eigenvalues in A,

[@ I is a matrix of all 1’s,

R * denotes element-by-element matrix multiplication, and

<+ denotes element-by-element matrix division.

Note that the quantity XX(t,) always exists for a stable system; however, tic
closed form expression of Equation 6.9 only applics to stable systems where the
BTP STM is diagonalizable. As a small, but useful, extension, if the STM can-
not be diagonalized because of repeated defective eigenvalues at zero, switching to
BTP'=k*BTP (where k=number of roots at zero) will yield a diagonalizable STM.

An alternate method of finding XX (¢p) is to solve the Liapunov equation

XX(to) = WX X(t)¥T 4 X X.

Which merely states that X X(2o) is the steady state covariance at the start of each
BTP.

Recursions Fortunately, the preceding expressions lend themselves to orderly
evaluation through a series of recursive relationships. Accumulators are established
for XX, WW, ¥, and YY; where ¥ accumulates the BTP STM and Y'Y, a scalar,
accumulates the second term in Equation 6.8. Starting at the first event or segment
in the BTP, with the corresponding state transition matrix (), the state covariance

¥’y

N , . . - en v . A
T E R AT L B St e e e S e G e e Rl R v

;§3:E§3
‘.::E::g 6.1. Cost and Gradient 51
-
%:;g; growth R, and the cost weighting integral Q are computed for the event or segment.
,;:"n:,' Then, the accumulators are updated using the recursion. This process continues
5:2: til all segments and discrete events are included. Then X X(%o) is found from
‘ ":d)' Equation 6.9 (which uses the modal decomposition of ¥) and cost is found from
;‘:{::' Equation 6.8. :
B :::’::i The initial conditions are: ¥ = I, XX =0, WW = 0, and YY = 0. The
::.I::: recursions are:
LKA
'E%‘iii" YY = YY +5XX*Q, (6.10)
R XX = $XX9T+R, (6.11)
| E}E'."gi WW = WW +37QU, and (6.12)
i v o= yu. (6.13)
s
:":‘:g; Note that the Y'Y update must precede the XX update and the WW update must
| ;g::: precede the ¥ update. Also, @ is defined by Equation 6.6 for analog transitions
fl’:!:' and @ is zero for discrete transitions. The R term is the right hand term in Equa-
,\f’l::' tion 6.3 for analog transitions and the right hand term in Equation 6.4 for discrete
:‘é?: transitions. Notice that these recursions are valid and stable for stable and unstable
{:, i systems and for defective BTP STM’s, Therefore a-priori stability knowledge is not
-—' f{‘ ‘ required. The appropriate cost function can be selected after the ¥, WW, XX,
= and YY are computed and the spectral radius of ¥ is known. Appendix B shows
. '!::,;; how Q, R, and ¥ are computed for continuous segruents.
' 6.1.4 Gradient of Main Cost Function
e 4y
. §§i§ Define () as the partial of () with respect to any of the adjustable parameters.
fﬁ}, When the gradient is required, YY, XX, WW, and ¥ are computed in pasallel
it with YY, XX, WW, and ¥. Initial conditions for YY, XX, WW, and ¥ are
b2 all zoro. Parallel recursions for YV, XX, WW, and ¥ ace obtained directly by
535 differentiating Equations 6.10, 6.11, 6.12, and 6.13:
gﬁ YY = YY+E(XX+Q+XX+Q), (6.14)
(8 XX = $XX9T+9p XX 9T+ XX 97 + R, (6.15)
'3?:"
::E‘

ooy

52 Chapter 6. Synchronous Design Method
WW = WW+3TQu+97Q¥ +97Q¥, and (6.16)
¥ = 0 +9pd. (6.17)

Here too, the recursions must be performed in the given order. The expressions for
X X(to) and cost are also differentizted to yield:

XX(t) = S[T1xT2)8" (6.18)

+ S[Tl *T2]S”
+ S[T1+T2|s#
+ S[T1+T2)S%.

Where:

Tl = S-'XXS§H,

T1 = 8§V XX S H4 S 1XXSH+S1XXS§H,

§-! ==§-1§8-1,

T2 = I+ (I~ AA¥), and

R Y .+ H
T2 = (AA" +AA) «T2%T2.
Finally, the cost expression is differentiated to yield:

1
T 2BTP

These partials are formed for each variable parameter. The cigenderivatives A
and $ are computed from the BTP STM (¥) and its partial (/) (see Appendix B).

J (E(XX(to) *WW + X X(t5) * WW) + YY) (6.19)

6.2 Search Algorithm

The gradient search process begins by guessing values for the variable gains and
installing them in the AB and DS matrices. Next, the BTP STM (), the related
parameters (WW, XX, and YY) and their partials (with respect to each variable

(i R0
t

N .
~;$§§ 6.2. Search Algorithm 53
R
(.:;‘;:;' gain) are computed for the specified phasing. The main cost or initial cost function is
4:%:{: selected based on the STM spectral radius. The cost and gradient are computed. A
‘;::;::: Quasi-Newton search is performed using the gradient and the Hessian. The Hessian
i‘%ﬁ: is initialized at identity and updated with the Broyden-Goldfarb-Fletcher-Shanno
: ;‘::’.v": update. Finally, the minimum along the search direction is found by a line search
:!:%?' using a parabolic curve fit guarded by the golden-cection step. These optimization
) ;’;E:s: methods are described in [GMW81}.
" (" e The computer code for the search algorithm assumes that the system is unstable
‘ i:::;;: when random initial gains are used and it queries the operator if stored gains were
7 ég:: used. When initial gains are unknown, random values may be used; but all-zero
. {:‘.E;": gains should be avoided. Setting the initial gains to zero may produce a rare singular
| _.""' condition where the gradient is not defined. When the system is initially assumed
S j{“' 4 unstable, the algorithm switches to the main cost function when the BTP STM
o 3 spectral radius drops below a threshold (e.g. 0.9). When a search step produces a
.» marginally stable or unstable system after main cost function is sclected, the cost
T routine returus a large positive aumber (1/eps was used). The system is treated as
N 75 2 unstable whenever max(X) > 0.99. Numerical overflow was never a problem.
> 3 y The actual search algorithm code (see Appendix E) was a direct implementation
My of the equations given in [GMW81).

A:' A

iy .
s Iz

~
-
)
=
o

e
Fo o
X

« 4
.
;
' @

LA EAA

'@..v o 2

st

t
‘1

L
\i\r!' % Y‘ X5 ‘.! ".!Q_' 1 i, ‘ ® V‘ LY, NER \
R MRS AN SR SRR AN AR AR AR

1
+

o 54 Chapter 6. Synchronous Design Method

Chapter 7
Asynchronous Design Method

The vector space of all possible phase values can be divided into a finite number of re-
gions where the BTP STM is an analytic function of phase (reference Appendix C).
In fact, the STM, its eigensystem, and the related quantities (WW, XX, and YY
in the previous chapter) are polynomials of phase in each of these regions. If these
regions are sufficiently small, a second order polynomial accurately describes the re-
lation between cost and phase. This polynomial approximation gives a simple way
of addressing the synchronous problem with unknown phase and, through that, the
asynchronous problem.

7.1 Synchronous with Random Phase

Suppose we have a system with two independent (not synchronized) sample pro-
cesses with synchronous periods, When the system is turned on, some random
phase is established between the sample processes and that phase remains con-
stant. Hence, the system is synchrouious but the phase is random. Assume that the
initial phase, 7, is uniformly distributed on [0,T). Let J(8,) be the cost function
of the previous chapter, where 6 is a vector of the variable parameters. J(0,7) is &
computable scalar that is uniquely defined for euch 6, = pair. As before, the cast

function is:

BTP 1 (T
~T « = =
E‘,{) XYW X(t)dt = T/o J(8,r)dr

39

N ey P LY A AR T SR TR AR TR T RARARI A LR VI ZL I PR TV PPN T N TR A W LR N ORI Y R R K AR IR TU AR R Iy ALY CANACYE T AR G R UER

56 Chapter 7. Asynchronous Design Method

where the second integrand represents the expectation taken over 7.

Direct numerical integration is difficult because each J(8,7) evaluation requires
a great deal of computation. As an alteruative, the region [0, T') can be divided into
regions where J(#, 7) is continuous. Then J(6,7) can be found for a few points in
each region and J(8,7) cau be modeled as a polynomial in 7 for that region. This
polynomial is easily integrated and the gradient of the integral is easily found from
the gradients of J(-) at the same sample points.

7.1.1 One Random Phase

The curve-fit approach applies to 7’s of any dimension, but the rest of this treatment
will deal with the simple case of one sequence with random phase. From here on,
7 € [0,T) is a ocalar. In this case, there is o set {tn, t1,...,4x} with ¢; € [0,T] and
t = 1,...,k such that J(0,7) is continuous for 7 € (%;,ti41). Therefore, J(-) will be
approximsted as a perabola in each region. Note that J(6,7) may be ill defined at
T = t; (a point of possible discontinuity).

Cost and Gradient

Let Jy, Ja, and Jy, represent the cost: J(8,7) evaluated at 7y, 5, and 73, where:

s
e t—‘-—%-‘-ﬂ (1.1)
€
=4 'é(t.‘n - 1), (7.2)
and
£
T3 = bigy = 'é'(‘-‘m - 4) (7.3)

where ¢ is a safety factor to insure thet the end points are actually in the current
interval. In the interval (¢, tia). the cost tunction is be modeled as:

J(0,z)=cz?+ bz +a

where a = Jy, b = (J5~ J1)/2, and ¢ = (J5 ~ 2J3 + J,)/2. For simplicity, 7 is
replaced by the scaled and zero-shifted dummy variable , where z = 0 corresponds

AN S M A M R et LA RPN WA A Y T MY kAN T I NS T2 W W T A MRS ML AR aTR L TE T el ot ' ol ATl ol RIS BEa 0t 78 SR 278 il S e

(
. e g

iy oy S

by

.
.
e

-y

g
=

_:2

7.1. Synchronous with Random Phase 57

to T = 73, £ = —1 corresponds to 7 = 7, and £ = +1 corresponds to 7 = 73. Using

this approximation, the contribution to the cost integral is:

tig1
/:- J(8,7)dr = (t;1 — t:)(cz?/3 + a)

]

:L‘=i-17' (7’4)
Likewise, for each gradient component:
J(0,z) = ¢a® + bz + a.

where & = Jy, b= (J3 — J1)/2, and é = (Js — 2J; + J1)/2. So

(7.5)

—_1 .
il parr

4 .
j Y 7(0,7)dr m (tig — t)(62%/3 + &)

Finally, the total estimated cost and gradient are found by summing the contri-
butions from each region and dividing by T'.

7.1.2 Design Algorithm

The design approach is a variation of the method for synchronous systems with
known phase. As before, the first step is to guess initial values for the variable
contro! gains. Now, however, the range of possible phase values is divided into
continuous regions. The synchronous cost and gradient are computed at the center
and nesr the ends of each region using exactly the same method as before. Then
Equations 7.4 and 7.5 are used to estimate the cost and gradient in each continuous
region for the random phase problem. The contributions from each interval are
summed and the gradient search proceeds as before. In summary, the key difference
is that a composite cost and a composite gradient are used instead of the cost and
gradient (for one specified phase) derived in the last chanter. The composite cost
and gradient for random phase are estimated from several values of the cost and

_gradient at specified phase values,

For the random-phase problem, there will always be at least one continuous
region; but there may be many regions if the discrete transition matrices do not
commute and the BTP contsins multiple discrete transitions from different sample
sequences. Therefore, many cost evaluations (J(f, 7)) may be required to evaluate
a single composite cost and gradient.

8 L gg s e g e e e R p T TR L e S e R T e e £ A s At r e 2 iR o i ot S W M S A 4 M M e 40 A a P R A Al Ly e 1A L WA N LYW LA Rt

58 Chapter 7. Asynchronous Design Method

Cost function selection (main or initial) is similar to the method with known
phase except the switch from the initial to the main cost cannot be made until all
sample points (say at 71, 72, and 73) represent stable systems. The code implements
the switch one gradient search after all points met the switch criteria. This one-step-
late approach was necessary to avoid storing the STM data (¥, WW, XX, YY,
and their partials) for each phase value uvntil ali the STM’s are tested for stability.

7.2 Asynchronous Design

The asynchronous design method is exactly the sarne as the method for synchronous
systems with random phase. The only difference is that the designer may want to
specify higher process noise or measurement noise for the true asynchronous case.

The rationale for using the random-synchronous method for asynchronous sam-
pling follows. Judicious selection of the asynchroncus BTP will produce consecutive
BTP STM’s which are nearly equal. Small STM differences are simulated by addi-
tional process noise.

The recommended design procedure is to start with a cost function based on a
auccessful continuous design method such as a good LQG design with a continuous
controller. Then use the synchronous method to quickly refine the discrete gains
at some arbitrary phase. Next, use the random-synchronous method to optimize
the gains for random phasing. Finally, the asynchronous stability condition should
be used to evaluate the stability of the resulting design. If the design is found
wanting (because 7(4\) is too large), then the process noise in the asynchronous
states should be increased and the random-synchronous method repeated. The last
gains are usually a good starting point for the next step.

Chapter 8
Design Examples

This chapter illustrates coutroller design using the methods developed in this report.

The first series examines the double integrator system of Figure 5.1. The design
procedure is applied to the synchronous and asynchronous examples of Chapter 5.
Step response plots and stability plots (¢ and A vs. 7) are presented for each set
of resulting gains. Finally, the asynchronous sample rate is varied to show how the
cost function can be used to evaluate sample rate effects.

The second series examines the two-link robot arm of {Ber86). The synchronous
design procedure is used to illustrate that this method duplicates the original result
(Ber86). Then, a new asynchronous sampling case is considered.

8.1 Doulle Integrator Examples

The states are numbered as shown in Figure 8.1. The parameters for all double
integrator examples are swunmarized in Table 8.1. Cost weights and process noise
matrices were adjusted by trial and error until the resulting design produced a
reasonable step response. The cost weighting and noise covariance matrices were:

(10 0 0] (10 0 0]
Wo=0100andX°=0100
0001 0 0001 0
00 0 0.1] (00 0 01

€0 Chapter 8. Design Examples

| PARAMETER | Nominal | Optimal Synchronous | Optimal Asynchronous |

Ci 0.500 0.666 1.121
C2 0.500 0.115 0.429
C3 2.000 1.025 1.628
T1 1.0 1.0 1.0
T2 1.0 1.0 0.9

Table 8.1: Parameters for Double Integrator Examples

The same W, and X° matrices were used for all double integrator designs.

X1 X2

{"1

)««.’:-Zj.- ‘ ‘l-'..‘

ST

F 3

3

é ' X3 | sen e

T1

cs 4] sen e ! c2

T2 +

Figure 8.1: Block Diagram for Double Integrator Systemn

8.1.1 Nominal Case

The nominal case used the gains from Chapter 5: ¢l=c2=0.5 and ¢3=2. These
values were picked at random. The stability plots for these cases were presented in

Figures 4.1 and 4.2 of Chapter 4. The step responses are shown below in Figures 8.2

i

. \' A
B N T M A BRI ORI AT AN RS S S R LT LN T N A T

8.1. Double Integrator Examples 61

and 8.3. For the synchronous sampling case, the phase was 1.0.

a LIRSS L T'll"'ll'l'ﬁ_l"f'jj"l
.
i
v 1T
o
o h
Q .
")
§
2]
2 .
° g
c
S]
-
-' h
o -
0
Q-1
1 | posttion
,
1 — — sgpesd
9
a reovy vl rrrerrryvyy2rrryrryryrrryrrr ey
' S 10 15 "] e5 38

time, 86C.
Figure 8.2: Step Response: Nominal Gains, Synchronous Sampling

Despite good stability (see Figure 4.1), the step response for the synchronous
sampling case is poorly damped. Good stability as indicated by the o-A plot should
not be confused with good performance.

The step response with asynchronous sampling (Figure 8.3) shows the time-
varying nature of the responsge. The damping and frequency vary (with period=9),
This is typical time-varying behavior of strongly-coupled asynchronous systems.

8.1.2 Synchronous Case

The design procedure was used for the synchronous system at phase: r = 1, The
optimal gains for this condition were: ¢1=0.666, ¢2=0.115 and ¢3=1.025. The
stability plot for these gains with synchronous sampling is shown in Figure 8.4,
The system is guaranteed stable for all phase conditions except for a small range
near zero (0 < r < 0.08). The synchronous step response for phase=1.0 is shown in

A ————

. e e LA D - B o Y S A - A 4 o~ 4 T

_ .:;i 62 Chapter 8. Design Examples

4T
position aond speed
«

position

1
1
4
n

-
o
i

.‘:*t' . — — g@pesd

) AL A S S RS S A S) NN N SO S

5 10 15 20 a5 30
time, seC.

g
u
o 44—
4
A
.
e

ol Figure 8.3: Step Response: Nominal Gains, Asynchronous Sampling

i Figure 8.5. Overall, the stability and performance are good.

o Using these same gains, these results were repeated for asynchronous sampling.

The stability plot for these gains with asynchronous sawmpling is shown in Figure 8.6.

! The computed o* was 0.056 indicating that the system might be unstable (although

A it wasn't). The step response with asynchronous sampling is shown in Figure 8.7.

N The stability and performance deteriorated compared to the optimal (synchronous)
design point,

8.1.3 Asynchronous Case

L The design procedure was used for the asynchronous system. The optimal gains with
asynchronous sampling were: ¢l1==1.121, ¢2=0.499 and ¢3=1.628. The stability plot
for these gains with asynchronous sampling is shown in Figure 8.8. The computed
i) o* = 0.061 so the system is not guaranteed to be stable. Therefore, the stability

test was repeated using a better approximation of synchronous sampling (the exact

8.1. Double Integrator Examples

EOB N SRR A A (N N BAARh SRS (NNED BRSNS NN AR SN JMNNE SN RNNRS SN SURNNL SUNEE BN ML
] —log (Lambda)]
1 -5
4 —log (s1gma) 1

L ._‘ ﬂ

5 2.4]]

€

o 1 1

- - 1

]

;E.E“ .

o 1 1

- 1 A
o

o G\

-~ b -

0

v j +

$.0.2] -

u'ﬂ.a‘: q

c -

2]]

~-8.4 .
b 1
1)
1 L

'0.6 L A D A R A A A R At AR S [£
Q 2.2 8.4 2.6 9.8 1

Asynchronoue Sequence Phose, sec.

Figure 8.4: Synchronous Stability Plot, Synchronous Gains

B e L e L B T e A A A &
- -
7 -
1
b I B
@ | ‘
o
& w
- «
v
c h L
o g ,
g]
- < L
-b
- h of
-]
o] 1
Q“" -
) position |
A
4 - - - gpeed 4
'a vwww]-'vv‘vv'ﬁr‘vv-r]vvr—v‘f'ﬁ—vﬁ'
g s 19 19 20 a5 30

tine, s3C.

-

Figure 8.5: Stcp Respouse: Synchronous Gains, Synchronous Sampling

)
L7
3
l‘
o

S

[
£

A

*
‘é"

-
[e

64 Chapter 8. Design Examples

a i L L Ld ‘ Ad L v ' L] AJ ¥ ' v A ¥ ' v Ll v l v 4
{ =—log{lombda) .
1 - logtsigma)]
g 1437]
€ 4 E
9 T \ 1
[1
-~ 1 | | -
2] Lo w
-] ! |]
- ‘ I h
o 905-‘ / \ I\ B
3 :\ _7 N)
3] T - N]
g z - h
: - e
4) .
o} h E
"..005- =
-5 -
E 1
‘l ¥ v Y T L Y \] Y Y \J ¥ T Y ¥ AR | L s pEans J T
] a.2 8.4 8.6 2.8 1

Asynchronous Sequence Phose, sec.

Figure 8.6: Asynchronous Stability Plot, Synchronous Gains

a L AR B A (A At St ERD R A0 A A A R A ANk Bst S RN NN SN SR Sy U BN S aen 2

position ond speaad
[

(3
[%

———— POG1LE0ON
- — - gpesd

A S U S R S N T

¥ S S)

»
n

AL Snn nn [N AN REL S ek A SR AN AN NN JNA BRSM AN AGHL S MRS AN SN ttn SAS INAA M Aew e £

8 S 19 15 ee a5 0
tine, sec.

Figure 8.7: Step Respouse: Synchronous Gains, Asynchironous Sampling

St e b i o M 0 AR A Tk . U T Bt 3 I X S Sl A B b8 B X AL aag ftue b

8.1. Double Integrator Examples 65

BTP=9.0 was used). The resulting stability plot for the same gains with BTP=9.0
is shown in Fjgure 8.9. The asynchronous step response is shown in Figure 8.10.

Overall, the stability and performance were good but not as good as the synchronous

case,
a] T T T T T T)
1 —log (Lambda) |
] —log(signa)]
-~ 105_1 -‘
o :
€ ! -
o -
o ~ |
o [
N o
1= "
“ 8.5 / \ n
3] \ s V|
B 1 - = V) \\
5 9 —
:: 4 4
3]]
—"0:5': b
-(
'l L4 v T)] A ol T v ¥ ¥ T v) 4 ¥ v v v ¥
Q 8.2 0.4 2.6 6.8 1

Asynchronous Sequence Phase, sec.
Figure 8.8: Asynchronous Stability Plot, Asynchronous Gains

Using these same gains, these results were ropeated for synchronous sampling,
The stability plot for these gains with synchronous sampling is shown in Figure 8.11.
The synchronous step response for phase=1.0 is shown in Figure 8.12. The stability
and pcrfénnanc:e deteriorated compared to the optimal asynchronous design point.

8.1.4 Sample Rate Effects

To investigate the effect of sample rate selection, the period of the asynchronous
(rate feedback) sampler was varied from 0.1 to 1.01 and an optimal asynchronous
design was performed for each satple rate. The minimum cost as a function of
sample period is shown iu Figure 8.13.

66 Chapter 8. Design Examples

a. T T Y T \J Y T \J \J 4 T Al v \J T T L T T
- —log (Lambda)]
] - log(eigma)]
57057]
€ J il
N]
@
~ 14 .
o]]
© -
-t o o
u'lls—' -:
3]]
b . 4
o : i
5 27 ;
bt o E
4
2]]
—-"2.5'* -
'3 T L T ¥ A A T v v Al T Y Y v T T \J ¥ T ¥
e 2.2 0.4 0.6 2.8 1

Asynchronous Sequence Phase. sec.

Figure 3.9: Asynchronous Stability Plot, Asynchronous Gains, Long BTP

a L v v L g ' ¥ v T Ad l Ad A v fT A i Bema R ‘ v hd Al ‘1 v v ¥
»f L
L o
o L
L L
v 14
)
® 1 A
g» ; o
L e
h:]
[4 b o
o) -
5] ~
Py o o
-d
- h ~
@ 4 §
[}
a.l - -
L §
4 pogition |
4 — - - gpeed 3
"a LA Zun e au S aun | M Sl Sun S e NNt D S e Sun (NN SRS SER AN SN N B AEm S
e 5 10 15 20 a5 30

time, wec.

Figure 8.10: Step Response: Asynchronous Gaius, Asynchironous Sampling

e
% ST

o

Vs

oo

3

8.1. Double Integrator Examplas .

T Y e T Y —
. ~—log (Lambda) 1
8.4 -log(sigma) |
1 1
3 e 4
€
<] 1]
i
@ 0.2 -
IR *
) 1 :
Py
§ .
o) N
3 1 -
g -
3]]
€
f-9.2]
z] i
@ _
o 1 J
-r p 4
~8.4 \j .
T LRSS S | LA Jand BANEN S SRNCE Mgt) D 2) ¥ TNy
0 .2 2.4 2.6 8.8 1

Asynchronous Sequence Phose, eso.

Figure 8.11: Synchronous Stahility Plot, Asynchronous Gains

2 peormeymy v

< § o

v 1 i

2 - l! E

a r] 1‘1
]

£ E

¥y 4

[} e i

[b «

& z

: b R i

© 9 4
Q

Q-] - d

) poeition |

] = == = gpeed p

-2 b D e 25e cshen St e aun s 20 A At et S St Sont Jus et men i MEL Sene ROn un Jun Bt S Ben S o

5 19 15 28 s 30
Line, oo,

Figure 8.12: Step Respouse: Asyuchronvus Gains, Syachronous Sampling

67

22 @ R ey

L Pk, s

.
Lo

68 ‘ <hapier 8. Design Examples

laa L gt) T | DA Y 12) Y Y Y Y (] ¥ T vyt T | B
1 1
e
B o
E E.
808 1
- €
4 -
1 .
Lo h L
]
c 60 - -
(8] 4 P
- 9
o]
E -
Lol
- 43
o - :
o -
20 - -
4
]]
4
-t L
3 LR § v 'w‘ Al 4 ." '*"" LA B 2 'l’ T ¥ A ' v

e 2.8 2.4 2.6 2.8 1
Raota-lLoop Somple Persocd., wec.

Figure 8.13: Optimal Cost as & Function of Sample Rate

Miniwizing the cost function produced good contsoller desigus. Therefore, we |
wight use these minimum costs to compare the goodness of different sample rates,
The figure illustrates the diminishing returns when one sampler becomss much
faster than the other. The figure ulso illustrates an apparent worst case when
both samplors operate at almost the same rate. At first glance, this seeius to bea
centradiction. For the esrlier design case (see Figure 8.4) the cost was only about
3.5. Yet, Figure 8,13 shows the cost approaching 600 for the synchronous case.

The contradiction is casily solved. The optimal synchronous design case was
based on a phase {7) of 1.0. For the eptimnal syachronous (optimal et 7 = 1.0)
goins, Figure 8.4 shows that the plant is actuslly unstable ut other values of . The
cost of an unstable system is infinite. Therefore, when the asynchronous desiga
method is applied with sample rates approaching synchronous, the design at rost
phase conditions was compromised to achieve stability for the siall, previously
unstable, range of phase conditions. So the contradiction is solved. The design
method gives the conservative result: a design that is stable (although just barely)

69

8.1. Double Integrater Examples

at all phase conditions.

T Ty

o Suﬂu..%vvvu o T

70 Chapter 8. Design Examples

8.2 Two-Link Arm Examples

A more realistic example is used now. The two-link robot arm and controller of
[Ber86] is used. This system is shown in Figure 8.14. Two sampling configurations
were examined. For the synchronous configuration, the slow samplers (T}) operated
with a period of 0.225 seconds and the fast samplers (T;) operated eight times faster.
For the asynchronous configuration, the slow samplers operated at the same rate but
the fast samplers operated at 27 times that rate. This was truly asynchronous (to
the computation accuracy of the machine). The cost weighting and noise covariance

matrices were identical to those in [Ber86):

(210 0 00 0O 0 0 0]
00 0 00 0O 0 00
0 018000 0 0 00O
00 0 00 0O 0 00
Wo=]00 0 01 0 0 00
00 0 00 69.44 69.44 0 0
0 0 0 00 69.44 69.44 0 0
00 0 00 0 0 00
00 0 00 0 0 0 0]
and
(0 0 0 0 00000
0 91548 0 —29764 0 0 0 0 0
0 0 0 ¢ 00000
0 —2976.4 0 148741 0 0 0 0 0
X°=1{0 0 0 0 10000
0O 0 0 0 00000
0 0 0 0 920000
0 0 0 0 00000
0 0 0 0 0000 O]

The same Wy and X° matrices were used for both designs.
The parameters for the two-link arm examples are summarized in Table 8.2.

8.2. Two-Link Arm Examples 71

| PARAMETER | Optimal Synchronous | Optimal Asynchronous |

ay -0.485 -0.455
B 11.297 11.046
Pra 0.393 0.691
T -13.483 -12.888
T2 1.071 0.568
ay -0.553 -0.543
B 0.008 0.095
B2z 13.439 9.597
Y21 -0.121 -0.115
Yog -16.865 -11.710
T1 0.225 0.225
T2 T1/8 T1/(27)

Table 8.2: Parameters for Two-Link Arm Examples

:B2l 0’ 0 ;ﬂll
T z T1 T4 T
4 — i T 3 T : _iﬁz_l 1 : ?%51}%__’1._“1
—4B9q 07 fe=
Bres S&H|%e
1921 (T1)
6ref
>+B41 § P - 12
T z T .
pype— I TR f ._....iﬁzq da _ tg
R S&H
1B 42 | azle Y22 ‘?4-—-(1‘2) .,
:- ﬂ2
<4———PLANT > - CONTROLLER >

Figure 8.14: Bleck Diagram for Two-Link Robot

72 Chapter 8. Design Examples

The two-link arm system has a fairly high sample rate and it does not have
strong coupling between controllers. The resulting asynchronous system performs
well at all gain/sampling combinations, but the best performance occurred when

the design gains are used for each sample condition.

8.2.1 Nominal Case

The new synchronous constrained optimization algorithm was applied to the multi-
rate two-link arm system of [Ber86] and the resﬁlting gains were identical to those
published in [Ber86].

The asynchronous stability plot for those gains is shown in Figure 8.15. This
plot shows that the stability is totally insensitive to sample sequence phase. The
corresponding step response is shown in Figure 8.16.

0’6 LN Rt A NS S Snn S A AN GH Suiet ML SN S HNL St Smal HARt gt MINLSNND RUNL St M ML SRR N S

—1log (Lambdo)
‘log (sigma)

Q
.
>

PRSP NS ST N R A
2 a4 1 5 2 o1 ¢ 4 2

€ log(sigma)
-~
o

'
[~)
-

mn

log (Lambda)
IJJIIIJJIJ4

22 a3 s 4 o 1 4 03 4

'a.s ooyt e e r T T Ty

2 e.085 0.8 e.e1s 0.02 2.825 .03
Asynchronous Sequence Phase, sec.

Figure 8.15: Synchronous Stability Plot, Synchronous Gains

8.2. Two-Link Arm Examples 73

a ll Ifl’T "l l L I Ll

1 1
1 _ 1
T Vd \\ A
1 > - 1

& 1 L e

hot 1 / N

-t 4 -

g / -

Q] /

S e

£ W/]

'U 1

c) .

o

o J

bell B -
1 tip 1

N
- == . hub
.a l'Il‘lIIllll"ll'lIlllllll"l

0 ¢.5] 1.5 e 2.5 3

time, sec.
Figure 8.16: Step Response: Synchronous Gains, Synchronous Sampling

8.2.2 Asynchronous Case

To evaluate asynchronous sampling, the step response was repeated using the same
gains but with the asynchronous sampling condition. The result is shown Fig-
ure 8.17. The step response is somewhat degraded.

Some step response degradation resulted from the overall slower sampling rate
and from the mismatch between gains and sample rates. To investigate this, the
asynchronous design algorithm was used to find a new set of optimal gains for
the asynchronous sampling condition. The resulting gains are shown in Table 8.2.
The asynchronous stability plot for the new gains is shown in Figure 8.18. The
step response with the asynchronous gains and asynchronous sampling is shown
on Figure 8.19. Except for a slight difference in initial overshoot, this response is
nearly identical to the optimal synchronous response,

Finally, the step response was repeated for the asynchronous gains and the
synchronous sampling condition (see Figure 8.20). This response is slightly slower

74 Chapter 8. Design Examples

e LI S A B (R A RAN R S SR RERL AL ANNL NN RSN AL SIS SRR B T 1 v 7y y '
1
1 P - S~ - -
c A / =~ ~ i
217 7
-) .
s] / -
1 -1
g / .
32 /
£ {1 \r 4
o 1 .
o 1
o i i
31
tip i
- = - hub J
.2 [r v v L l T T L] L I L] LI v I ¥ ¥ L hi l L{ L] L) L] l T L] L] L]
2 e.s 1 1.5 2 2.5 3

tima, sec.

Figure 8.17: Step Response: Synchronous Gains, Asynchronous Sampling

a.s T A4 T T 1 Y s Y v T T A\ T T] T T T T B
1 —log (lambdo) -
] .
2] - log(sigma) 7
°]]
€ - L
o o 4
vt oy -
B 1.5+ .
- -
o 4 J
Q - o
-~ 1 - . -
Y] 1 d
S 9.5 .
° 1 i
8 - -
. :
- 2
- - -
o 1]
o] 4
o -
~.p.5 -
o o
L e
‘1 T T] T T .} L 1 Y Y v g T T Al Al v
@ 8.01 e.e2 e.03 0.04

Asynchronous Sequence Phase, sec.

Figure 8.18: Asynchronous Stability Plot, Asynchronous Gains

8.2. Two-Link Arm Examples - : —. 75

a LI St S B M S A S SN SN IR UL NN SN R S BN A (L RN B SRR AR S BN BN B
. 1 _ - 1
TN 77 _
= —
o 14 : - —
4
- h / 4
@ - -
o 1 / .
a | |
2 g /
2 /
L L \ o
A h T
c
S 1
a b 5
i 1
- tlp -
- — — - hub 5
9 b
"a LU B B S SNt L Sk S S Lt S N RN AL R BN S SN SR AN B S A M AN BN S
e e.5 1 1.5 e 2.5 3

time, sec.

Figure 8.19: Step Response: Asynchronous Gains, Asynchronous Sampling

than the best results but quite good overall.

For the two-link arm system, the asynchronous controller is nearly as good as
the best synchronous controller.

76 Chapter 8. Design Examples

e LI BN N RN R A SN RN BN SN NN R SGL IS RERL AL NANL ANNA NN SIS INNA ANAL N0 L AL AN I

- -
b - =~ -~ 9
- ~ ~ -

[=] .

o 1+ = SRS

-t

- h L

-t -l -y

o

o . 4

n L

40

& - b

v b 1

[

o h A

a] 1

i o

- 1 .
1 tip]
o _-w - hub N
e L

'a 20N S Sant il MRS M St s St D S S Rl S A Ak Mt Mnh S Ak S Sk A S S i B
] 8.5 1 }.5 e 2.8 3
} tine, sec.

Figure 8.20: Step Response: Asynchronous Gains, Synchronous Sampling

Chapter 9

Practical Considerations

9.1 BTP Selection

For the asynchronous case, BTP selection is left to the designer. There are an infinite
number of BTP choices. Long BTP's provide better approximations of synchronous
sampling but long BTP’s require more calculation (for &, WW, XX, YY, and their
partials). Furthermore, even slight improvements in the BTP match eventually
require large increases in the BTP. Clearly, this is a diminishing returns situation.
Iucidentally, the design method is not compromised by long BTP’s (although the
computational burden is high) because the cost is the true continuous-time integral
of the weighted mean square error. However, the sufficient stability condition only
considers errors at the ends of BTP's; so short BTP’s may be more appropriate for
the stability test.

The following rules and rationale were developed to guide the best selection from
a finite number of alternatives. Suppose now, that the designer starts with a list of
candidate BTP’s. For example, this may be all candidates with BTP’s shorter than
one minute. Such a choice would be reasonable if the plant time constants were on
the order of a minute.

(]

s A

-+
%
h

i,

.
e

5,

-,
ot

g

o

R -
o g g I
-

78 Chapter 9. Practical Considerstions

9.1.1 Rule of Thumb

Let T3, T3,...,T; be candidate BTP’s which contain n,,n,,...,n;. discrete events
and which have consecutive phase slips (i, (3, ..., (k. The best BTP is the one with
the lowest n; * (; product.

Consecutive phase slip is the difference in phase between consecutive BTP’s.
Phase is defined as the delay from the start of the BTP to the start of the asyn-
chronous sample sequence. The other sequence is called the synchronous sequence
because it is synchronous with the BTP.

9.1.2 Rationale

Recall that the continuous-time state transition matrix for elapsed time ¢ can be

[A B](
o()=|,l0 0} ,

0 I
Now assume that ¢ is small so this can be approximated by the first two terms of

computed as:

the series expansion for the exponential:

ABO
) =I+|0 0 0|¢=T+2(
0 00
where Z is defined as indicated.
Let sequence 1 be synchronous with the BTP while the sequeance 2 phasing
“slips" by ¢ from one BTP to the next. Suppose we expand the state transition
matrix for the first BTP as:

‘pl = DIHIDZHT . 'Dn-lnn—annu

where D; is a discrete transition in sequence 1 and II; includes all the continuons
transitions and all the discrete transitions from sequence 2. Then the stete transition
matrix for the next BTP will be

V3 = Dy &({)I &(~() D3 @3+ -Tamy &(~) D ®(¢)Ma(—¢)

9.2. Asynchronous Analysis of Synchronous Systems 79

providing that none of the sequence 1 dis.rete transitions transpose with sequence 2

discrete transitions. Using these approximations for & we get:
Wy = Dy(I + ZOIL(F = Z¢)Da(I + 20y - Mpes(T = Z¢)Da(I + ZOIa(I - Z()

=¥ +{(D\ZII,D,II3-+- D11,y D, 1,
—D\I1,Z Dyl - Dy Iy D1l
: (9.1)

DyII1 DoIl;- - - Dy a1 D 210,

—D\1, D11+ - - Dy -1 D, Z11,)

The basis of the asynchronous analysis and design approaches is successive BTP
state transition matrices which are nearly equal. This means that the last term in
Equation 9.1 should be small. We cannot say much about this term, but two things
are clear. First {(multiplies the whole thing so ¢ should be small. Second. the
number of terms in the brackets is proportional to the number of discrete eveats in
schedule 1 during the BTP. So the number of discrete synchronous events during
the BTP should be small. The rule of thumb follows from minimizing the product
of these two items,

9.2 Asynchronous Analysis of Synchronous Sys-
tems

It may be more appropriate to design and analyze a synchronous system as if it were
asynchronous. For example, assume a system is synchronous but the real BTP is
very long (much longer than plant time constants).

The computations would be much easier if the system were treated as asyn-
chronous with a shorter BTP. Furthermore, we are normally interested in behavior
during time intervals much shorter then the BTP. Although state errors may de-
crease over the whole (long) BTP, they may grow unacceptably during some portions
of the BTP (i.e. short term instability). When behavior during periods shorter than
the BTP is of interest, it is appropriate to use a short “fake” BTP and analyze the

80 Chapter 9. Practical Considerations

system as if it were asynchronous. In this case, 7 is not uniformly distributed;
rather, it assumes a finite number of values depending on the initial phasing and
sample rate. Heuce, only a few evenly-spaces the points on the stability curves
are relevant, Still, o* and the A and o curves give good estimates of the stability,
particularly if the exact phasing is unknown.

9.3 Accelerated Convergence

The design method is completely automatic; however, some manual interaction
can accelerate convergence to the optimal solution. The synchronous optimization
process is much faster (at least three times faster) than asynchronous optimization.
Consequently, the synchronous method should be used with some representative
phase condition to fiud initial gains for the asynchronous optimization process.

The asynchronous optimization search cannot switch to the stable cost function
until stabilizing gains are found for all of the phase conditions (curve-fit points).
When only a small phase region is unstable, this search can be very slow or it can
stall altogether. This is usually cured by one or two synchronous optimization steps
at the offending phase condition. Alternatively, if there are several small disjoint
unstable regions, the power in the initial cost function can be iucrensed, Fourth
and eighth powers were used in the examples but these can be increased within the
numerical precision of the computing hardware, '

9.4 Cost Weighting Matrices

Chouosing good noise covariance and cost weighting matrices is not simple. [BerS6)
demonstrated that matrices selected to produce good continuous-time desigus also
worked well for the multirate controllers. Based on this and the relative ease of
continuous-time design methods, these matrices may be developed by first desigring
a “good” continuous-time LQG controller and using the same cost and covariance
matrices for the multirate discrete design.

9.5. Numerical Properties 81

9.5 Numerical Properties

The design and analysis calculations rely on two matrix operations that may present
numerical problems. These are spectral factorization and matrix exponentiation.
Whiie these two matrix functions always exist (in theory) computing their values
can be a significant numerical problem. The codes for the sample problems used
PC-MATLAB [MLBKS5] which implements the EISPACK algorithm [SBD*74} and
the Padé approximation algorithm [MVL78]. One attempt to use another matrix
package (which used an eigensystem approach for matrix exponentiation) was un-
reliable. Any impiementation of the methods presented in this paper should start
with fast reliable algorithms for these two matrix functions.

Maximum System Size

Practically, the maximum system size for the method is limited by the numerical
precision of the various mathematical operations. Assuming that the BTP is rea-
sonably short, the various STM-related matrices (&, WW, XX, YY, und their
partials) can be computed with only small errors since matrix multiplication and
addition are the only operations invelved. Also, the closed-loop system eigenvector
matrix (complex) must be inverted, but this should be a well-conditioned matrix
in the vicinity of the optimal gains (otherwise, $~' XX §-# in equation 6.9 gives
high costs). Other inversion processes use the pseudo-inversz so ill conditioning is
not a problem. '

With no analog geins (in 4 or B), finding the Q matrix requires exponentiating
8 2(n; + n,) by 2(n, + n,) matrix whete n, is the number of continuous states
and n, is the number of sample states. If there are variabie gains in the A or B
matrices, 8 3(n, +n,) by 3(n, + n,) matrix must be exponantiated to find Q. Also,
the STM eigensystem (dimension equals number of stater) must be found for cach
gain/phase condition evaluated. The ability to accurately find these transcendental
matrix functions limits the size of the system these methods can handie.

No attempt was made to quantitatively determine the maximum system size
as a function of algorithm accuracy. The PC-MATLAB routines use the IEEE

*ii,‘s’@; kel
;Xs;ilig“"'“

ilg‘l

s»,%}“*‘

i

e
T

n
iy

A A
a0

Poed

b,
LA
ot

P

-~

rix —.&., K
ot e
ot
S

Rk
: m’%’fﬂf

" vt

;‘i';:’i.
s

82 Chapter 9. Practical Considerations

standard arithmetic in the 8087 numeric coprocessor. Each real value is 64 bits
(52 for the mantissa)., Unusual behavior attributable to numeric problems was not

encountered.

5.6 PC-MATLAB Implementation

PC-MATLAB was an excellent vehicle for developing the prototype algorithm. The
compile and execute speed were good, but more importantly, the high-level MAT-
LAB language allowed very rapid, reliable code development. Furthermore, the code
is quite readable. MATLAB’s modularity and consistency checks assisted code de-
bugging significantly. However these very strengthe created limitations that could
be significant if execution speed aud storage efficiency arc paramount considerations.

Pointers and Tables

PC-MATLAB sxecutes built-in functions (like matrix exponentiation and modal de-
composition) very quickly but logical consiructs (“for” loops or “if™" loops) execcute

~ slowly. Therefore, brute-force caleulations were often used in pluce of seemingly

more efficient constructs. For exawmple, in PC-MATLAB, it was much {aster to re-
compute 8 frequently-used matrix exponential than it was to branch to a subroutine
for table look-up, Similarly, it was faster to store u sparse matyix and mmltiply by
the whole matrix than to use pointers to the fow non-zero clements. For implomen-
tation in some other compiled language, significant speed and storage :mprovements
may be cbtained through the use of pomtem and table look-ups.

9.6.1 Square Root Algorithms

Several symmetric matrices (WW, XX, zud the H&saan) are propagated usmg,
upiates of the form:
Zusy =T 4 Vel +Y,

where Y and Z are symmetric and non-negative defaite. This is the same form as
the Kalman Filter covariauce propagation equation. That suggests using a squsse

A 9.6. PC-MATLAB Implementation 83

root algorithm [Kai81] [BH75] to accomplish the propagation. This was not at-
0 tempted in the prototype code because MATLAB only deals with rectangular ma-
i trices and “definiteness” problems were not encountered. Therefore, there was no
storage or computational advantage to implementing the square root algorithm in
K -the PC-MATLAB code. However, implementations in compiled languages that can
;:‘e exploit the storage and computational advantages of triangular matrices would ben-
Ny . efit from a square root propagation algorithm.

C‘ o

P i PR

.
S .
B o L
"J'yr."* .

G
o -5
i s .-n-'? .

2

)

X

+ &
1~
oA

Chapter 9. Practical Considerations

Chapter 10

Summary and Recormmendations

10.1 Summary

A sufficient asynchronous stability condition was developed. The figure of merit
describes an exponential envelope which bounds the worst-case average state error
history for any initial condition. The figure of merit is found through numerical
integration of quantities computed from the system state transition matrix. The
integrands have useful physical interpretations.

The Constrained Optimization Method of Berg [Ber86) was generalized and
reformulated. The resulting method is more efficient, it avoids numerical overflow
problems, and it includes discrete measurement noise. The reformulated mothod -
was shown to replicate Berg's results.

The reformulated constrained optimization method was extended to the syn-
chronous sampling cage with random phasing. This extended approach produced
satisfactory controllers for several asynchronous sampling cases, B

10.2 Recommendations for Future Reseairch

Recoding the method in a compiled langusge is tedious but could provide substantial
speed and storage improvements. An improved linear search algorithm should give
an immediate speed improvement. The other approaches listed in the last chapter

85

86 Chapter 10. Summary and Recommendations

(square root algorithms and table look-ups) should also provide more speed.

Modal decomposition accuracy and matrix exponentiation accuracy appear to
be the limiting factors on system size. This relationship could be explored to find
the practical limits of the method.

The robustness with respect to sample rate, controller gain, and plant uncer-
tainty should be investigated. Designs resulting from this method should have good
robustness since they minimize a continuous LQR cost function and continuous LQR
designs have desirable robustness properties. However, nothing is actually known
about the robustness properties of these designs except that the cost gradient is
zero (with respect to the gains).

Methods of selecting sample rates should be investigated. All existing design
methods begin with specified sample rates. If some equivalence between controller
computational operations and cost function is specified, then an optimal sample
rate should exist.

. Methods of selecting the cost function weights and process noise should be inves-
tigated. Existing design methods begin with specified values for these matrices (Wy
and X in this paper). Berg [Ber86] suggested using a satisfactory continuous LQR
design as the basis for the diagonal blocks and this seems to work well. However,
use of the off-diagonal blocks to avoid saturation may merit further investigation,

Methods of balancing the eigenvector matrix should be investigated. The suffi-
cient stability condition is sensitive to the scaling of the BTP STM (¥) eigeavectors.
This also affects the numerical precision of the design algorithm, The optimal scal-
ing could be investigated.

Methods of extending the method to systems with defective and ill-conditioned
BTP STM's should be investigated. The design method used the modal decom-
position as a convenient way to solve the Liapunov equation for the steady-state
covariance. However, the steady-state covarinnce exists for all stable systems. Con-
sequently, the mcthod should extend to all cases given another solution to the
Liapunov equation. |

Appendix A
Eigensystem Derivatives

This appendix develops formulas for the first partial derivatives of a matrix eigen-
value and eigenvector as & function of the matrix, its eigenvalue, its eigenvector,
and the first partial derivative of the matrix.

A.1 Problem Statement

Consider any non-defective real n by n matrix 2. Let); be an isolated non-zero
cigenvalue and s; the corresponding eigenvector.
Since Z is not defective, it can be factored:

Z = SAS™ — (A)
where § = [8)0++8;++8,) is & matrix of the n independent eigenvectors and A =
diag[Ay+>-A;r+ < Ay) is & disgonal matrix of the corresponding eigenvalues in the same
order. ' -

Since A; and 3; are an eigen-pair:

Zo; = 4\.'83) (A2)

by definition. Also, the norm of s; is arbitrary so choose ||s;]|z = 1 for convenience.
Suppose Z is actually Z(a) where a is some scalar. Define

s 82 ¢ 8,\; . as.»

Z=fa-;, A;:-a-;-, anda.-_a-;.

87

88 Appendix A. Eigensystem Derivatives

Then, the problem is to compute ; and §; given Z, Z, X;, and s;.

Since the norm of s; is arbitrary, let
sHs =1 (A.3)

where the “H” superscript indicates the conjugate transpose (Hermetian). Differ-
entiating with respect to a gives 3fs; + s$; =0 or

R(3Hs) =R(s#3) =0 (A.4)

This means that, for a constant-length eigenvector, $; can be expressed as §; =
3t + jysi where 3} is in the orthogonal complement subspace of s; so sffs} = 0,
j =+v/-1, and ¥ is some real constant.

A.2 Equation Development
Start by differentiating Equation A.2 with respect to a:
ZS, + Za‘ A‘8| + A‘&p : . (A‘5)

Observe that the right-hand side is already divided into a component in the o,
direction and a part in the subspace where 3; resides. Pre-multiplying both sides
by s and solving for A

X.‘ = af"Z‘s; + 8?(3 - A3,

Observe that s; is in the null space of (Z ~ AI) 80 if §; = 3* 4 jvs;, only 5} influences
A; aud v is irrelovant. Using this fact, we can simplify the equation somewhat:

Ai= ¥ 204 sM(Z = ALY o 388 4 81 Zit. (A.6)

Now, pre-multiply Equation A.5 by (I— s;sf’) to project into the orthogonal
complement subspace of s;

(1= s:3) 23 4 (1 - 5:81) 23, = A1 = 80134

A.2. Equation Development 89

which can be regrouped as
(- s:sN)Zs; = (1 = sisf)NL = 2)(8F + jysi) = NI = (L — sis7)Z)35. (A7)
The unique solution is given by
st =NI= (- 8821 (1 - si8i") 2 (A.8)

if the matrix [\ — (I — s;3¥)Z) is not singular. This non-singularity requirement
will be explored further in the last section.

If Equation A.8 has a unique solution, then it can be used to compute i and
that result can be used in Equation A.6 to compute the respective Ai. If) and
s; are available, calculations require solving one set of complex linear simultaneous
equations (of form Az = b), four complex vector-matrix multiplications and five
complex vector products.

A.2.1 Eigenvector Derivatives

The cigenveetor derivatives may require an extra step because §; = 3¢ + jvs; and
~ is still unknown. For s; real, §; will also be real so « is zero. Hence, §; = $} for
real eigenvectors.

For complex eigenvectors, the solution requires separate consideration of the real
or imaginary parts. The real part of Equation A.5 can be written:

Zv + Z(R(3F) = yw) = o — dw + o(R(3}) = yw) + w((5}) +v).

where 3; = v + jw and A = ¢ 4 jw. But 7 is the only unksown (v, w, o, ¢, w, W,
and &} are known). Thercfore '

(2 = él]u + ow + |2 ~ oIR(5E) —wB(58) = W2 - olw +ww) (A.)

_where everything is known except the real scalar 4. Any non-zero component is

sufficient to compute . In practice, the vector ([2 — o1}w +wv) should be computed
and the largest component should be used to find v. Then only the corresponding
component of [Z — o1jv + ww + [Z — olJR(5}) -~ wS(5}) need be computed. The
extra work to find ¥ is one real matrix-vector product aud two real vector products.

90 Appendix A. Eigensystem Derivatives

A.3 The Singularity Condition

Theorem 5 The matriz (NI — (I — 3;87)Z] is not singular when \; is a distinct

non-zero eigenvalue and Z 13 not defective.

Proof: Since Z is not defective, Equation A.1 can be used to factor Z giving
(AI—-SAS™ + 8.'8,”5.’\5—1].

This matrix is non-singular if all the eigenvalues are non-zero. To see the eigenval-
ues, apply a similarity transformation by post-multiplying by § and pre-multiplying
by §-1. Since Z is not defective, 9 is invertible, and the eigenvalues are invariant
under the invertible similarity transform. After canceling $-!$ terms, where ap-
propriate

A=A+ S™taislSA)

. Consider the term: §-'s;s/SA. This can be resolved as follows
3'185 = €,

88 = (B Bimtin 1y Bigr i+ B

where ¢; is a unit vector in the i'th direction and g;; is the inner product between
s; and s} (always £ 1), So ‘

0 .. 0 0 0 - 0

0 - 0 0 0 .. 0
ShaslSA= I ABis o ABias M NigtBivig v+ ABus |+
_ 0 ... 0 0 0 N |

L 0 s 0 0 0 v 0

Now add this to the two diagonal arrays: A\l — A for the following result:

SN = (1= 5is¥)2]S =

A.3. The Singularity Condition

0
By
0

0

b

A=A -

0 0 0

A=Ay O 0

© AietBic1i A Aip1Bir o

0 0 XN—Ain

0 0 0

A= An

0

'\nﬁn,i
0

21

(A.10)

By inspection, the matrix is non-singular when all the diagonal elements are non-

zero. In fact, the diagonal elements (A; = Aq, -« 4y A = Aicry Aoy Ai = Aigay 1 Ai = An)

are the eigenvalues. So the necessary and sufficient conditions for non-singularity
are: A; # 0 and); # A; for all j #1.
This completes the proof but it is interesting to consider A; = 0 further. If \; = 0

the null space of the matrix on the right side of Equation A.10 is ¢;. By reversing

the similarity transform, we see that the null space of the original matrix (whea
A = 0) is s, the eigenvector ¢f Z corresponding to A;. Since we already know that
3 is orthogonal to s; the fact that s; is a null space of [\l — (I = 5;37)2) makes
absolutely no difference in Equation A.7. Therefore, Equation A.8 is still correct
if the pseudo inverse (which has columns orthogonal to s;) is used in place of the

ordinary inverse,

92 Appendix A. Eigensystem Derivatives

2

A

-
-
-
e

-
.

,. (,, -
- :
i o g

®,

w7 s

-t .
"t
s
iy

o
o
ol

Py

s @ Lk

223

Lo Y

-,
Lo il gty

3 @ Tox

Appendix B

Discrete Conversion

In Chapter 6, the quantities @, Q, and R were defined for continuous transitions
with no discrete events. Methods are developed here for computing ®, @, R, and
their partial derivatives with respect to a scalar variation in the state differential
equation matsix. These results are based cn Vau Loan's work [VL78].

| B.1 Problem Statement

Assume a linear, time invariant continuous system described by matrix state equa-
tion 2. = Az, + Bz, where 2, is the continuous part of the state vector (which is

- changiug) and z, is the sample and hold pari of the state vector (which is constant).

For convenicnce, 4 and B are grouped into a single matrix:

= [A B]
0 0
Lot A and B be a fusiction of a scalar a suck that :

o 0 O 0 0

The desired results are expressions for the matrices @, @, and R defined earlier
(see Equations 3.3, 6.6, and 6.3). For efficiency, the following abbreviated forms

.

94 Appendix B. Discrete Conversion

and their partials will actually be calculated:

&(t) = exp(Z 1), (B.1)

8(t) = exp(At), (B.2)

R(t) = [9(s)2% 6(s)7 ds, and (83)
QD) = [®(s)T Wey 8(s) s, (B.4)

where 29, is the continuous process noise covariance matrix and W,, is the top left
corner of the cost weighting matrix (for the continuous and hold states). To obtain
the correct form for the Chapter 6 expressions, the rightmost columns and bottom
rows must be added to get the correct size matrix. R should be filled with zeros, @
shoul be filled with an identity matrix, and @ should be filled with Wy ¢,

Also, we need the partial of ®, @, and R with respect to a scalar ¢. All these
partials should be right filled and bottom filled with zeros to obtain the correct
sizes.

B._2 Van Loan Results

Van Loau [VL78] proved the following: If

A4 b, G
C=1|0 Az B:

0 0 A
is a block triangular matrix of constants and
| R 6 m@)
=1 0 F(t) Gy |

0 0 R
thea:
Fy(t) = e, (B.5)
Gy(t) = jo " eAtt= B gAmir 4y, and (B.6)

. t . t pa : »
H,(!) = /o eit-9) C,‘ elivat gy .+/o /o ehilt-9) ‘BJ‘ eAsnle=r) B,-“'e""" drds. (B.7)

B.3. Main Result 95

B.3 Main Result

-2 W, 0 Fi(t) Gi(t) Hi(t)
LetCo=| 0 Z Z|andel@=| 0 Fyt) Gt)
0 0 2z 0 0 Fyt)
Then:
o(t) = Fy(t) = Fa(t), (B.8)
od(t
20 = 60, (8:9)
Q(t) = FL($)G(t), and (B.10)
oQ(t
20 Fm(0) + O RO (B.11)
Parallel results are obtained for R by replacing Z with A7 and W,, with z,.
—-A :L'?l 0 Fl(t) Gl(t) H1(t)
Let CR = 0 AT AT and e(cf“) = 0 Fg(t) Gz(t)
0 0 AT 0 0 F3(t)
Then:
R(t) = F{()Gy(t), and (B.12)
OR.(t .
aaf) - F()H,(4) + [F7 () Hy(1)]". (B.13)
If only %—‘l is required, it can be found from
Z z
Cy =
80
Cet 7t 2=
(Co) . :;" (B.14)

When partials are not required, @ and R are found using the top left two-by-two
blocks of Cy and Cg in Equations B.10 and B.12. This simplifies the calculations
for cases without variable parameters in the A or B matrices.

B.4 Proofs

Equations B.8, B.10, and B.12 follow directly from the definitions and from Van
Loan's results in Tiquations B.5 and B.6. - ‘ :

96 Appendix B, Discrete Conversion

B.4.1 & Partial

® has a series expansion:

2% 7%
=l 2t o s (B.15)
2! 3
where Equation B.15 is the ordinary expansion of a matrix exponential.
The series expansion of the partial of ® with respect to « is found by differen-

tiating Equation B.15 term by term:

.) - - . 253
8;I>=Zt+(ZZ+ZZ)t +(ZZ +ZZZ+ 2°Z)t b
Oa 2! 3!

Compare this with:
[z V4
exp t].
(L 0 2

Expand the first few terms of the exponential series for:
1ol [z 2 2 (22+22)]|8
+ t + — + tee

The top right block in the first few terms certainly match the desired result. We
will prove that the top right block is the desired result by induction. Assume the

(B.16)

the matrix part of the A&’th term of the series expansion is given by:
Z* (2" 42322 + -+ 22%)
0 A '
Then the next (k 4 1) term will be;

Zk (22 42222 4.+ 225 [2 2
0 VA 0 2

0 Z&-H
So, we have proved by induction thot:

8z dexp{Zt)
exp([ﬁ 8z°]t) - [exp((’Zt) expa(az”] (B.17)

_ [ZH (224 2V 22 4 4 22Y)]

B.4. Proofs 97

Compare this with Equation B.6 for Ay, = 43 =2, By = Z, and Ci, =By, = A3=0

and we can also conclude that

Zt t t .
O™ _ / ez("")?g-ez‘ ds = / eZt=2) 7 %2 43, (B.18)
Oa o da 0

At this point, direct comparison with Equation B.6 confirms Equation B.9. So,
Equations B.9 and B.14 are proved.

B.4.2 @ and R Partials

Equations B.11 and B.13 are duals so only one of them need be proved. -Equa-
tion B.11 will be proved since its notation closely parallels the previous section.
Begin by taking the partial differential of the Q(t) definition with respect to a:

0QW) _ [*oroTw. 086) 4 . (10RO o
5 =), B W, dot [=g WaB(s)ds.
Now, substitute Equation B.18 for the partials to obtain: |

Q) _ a7 ' Z(e-v) 21 \
=2 = A (s)7 Wea jo e20=7) 2 62" dp ds (B.19)

1 re
2% 1 2T (s=v) _
+ ./o/oe Z2Te dr W, ¥(s)ds. |

Recognize that the second integral is the transpose of the first and that the first
is cqual to FJ(¢)H,(t) from Equation B.7 with C = Cq. This completes the proof.

N
e 98 Appendix B. Discrete Conversion

Appendix C

STM Continuity

C.1 The Phase Condition

Consider an asynchronous hybrid linear system. Such a system includes a linear,
time invariant continuous part with two or more asynchronous sample processes.
A basic time period is established (perhaps arbitrarily) and this establishes a time
window of interest. Let all the sample schedules be phase locked to the BTP except
one that is allowed to slide with respect to the BTP, Figure C.1 illustrates this
setup.

Suppose the state transition matrix (STM) for the BTP is expanded as:

VU= Wy Syt Wimr» W3 §3 W3 51 ¥4 S

where ¥y is the STM from the start of the BTP to the first event in the sliding
sequence, S is the STM for the first discrete event in the sliding sequence, etc.

Now, allow all the events ix the sliding sequence to slip At into the future where
At is small enough that:

1. Noune of the events in the sliding sequence leave or enter the BTP, and

2. None of the events in the sliding sequence meet or reverse order with events
in any of the other sequences.

99

100 Appeandix C. STM Continuity

1 1 1
T
—- time
Key Sequence
BTP
—_— T
T —
2 2 2 2 2 2 2
.ttt
-— Sliding Sequence —_—

Figure C.1: Phase Relationships

Then, the BTP STM for the slipped sequence can be written as
Y(slip) = U B(—At) Suy B(AL) Wy - W3 B(=AL) 5y B(AL) T,y

where ®(At) = exp(Z At) is the continuous state transition matrix for an elapsed
time At.

Since $(At) is a continuous, analytic function of ¢ (a matrix polynomial in fact),
and all the other matrices are constant, W is clearly a continuous analytic function
of the slip. |

Since this slip is synonymous with the phase (;) of one of the asynchronous
sequences, the BTP STM is seen to be continuous and analytic with respect to the
phase vector as long as the two conditions are met.

The total phase space can be partitioned into regions where ¥ is continuous
simply by finding the boundaries. So the problem is to identify all the delays r
where 7; € (0,7;) such that

E_!.% W(r;~€) £ Y(ri+¢€)

where T is the period of the asynchronous schedule and W(7) is the state transition
matrix for one BTP with phasing r. The easy way to do this is to identify each
phase value where cither of the two conditions occurs. This approach may find

C.2. Boundary Conditions 101

discontinuity boundaries where the STM is actually continuous, but that is not a

problem.

C.2 Boundary Conditions

There are two conditions that can produce an STM discontinuity: first, when a
discrete event enters or leaves the current BTP, and second, when discrete events
reverse order. These will be considered one at a time,

For the rest of the discussion, it is assumed that there is only one asynchronous
sequence with period T

C.2.1 BTP Truncation Cases

Let p be the remainder when the BTP is divided by T, That is tosay, BTP = kT+-p,
where & is an integer and p < T. Then, the BTP contains k¥ complete periods of
the asynchronous schedule when 7 € (0, p) and only k — 1 periods when 7 € (p,T').
It is unreasonable to expect continuity when the number of complete cycles in the
BTP changes, so 7; is a candidate discontinuity point if:

n=p=borri=T={p (C.1)

where §,, is the time from the start of the asynchronous schedule to the A'th discrete
event in that schedule.

C.2.2 Commutivity Cases

Suppose there is a value 7; such that a discrete event in synchronous schedule
coincides (in time) with a discrete event in the asynchronous schedule. Furthermore,
suppose the coincidence occurs during the BTP at 7 = ;. Then the order of the two
discrete state transition matrices will be reversed in W(r; — ¢) and ¥(7; +¢). If these
two discrete state transition matrices do not commute, then ¢; is a discontinuity
point.

102 Appendix C. STM Continuity

This condition can be described mathematically as:
k1 Ty + &5 < BTP, and k\Ty + & = 7 + koTa + &k and DDy # DDy (C.2)
where
ky, k; are any integers,
T; is the period of the synchronous schedule,
T, is the period of the asynchronous schedule,

§,; is the time from the start of the synchronous schedule to the j’th discrete event
in that schedule,

£5;; is the time from the start of the asynchronous schedule to the k'th discrete
event in that schedule,

D, j is the state transition matrix for the j'th discrete event in the synchronous
schedule, and

Dy, is the state transition matrix for the k'th discrete event in the asynchronous

schedule.

C.2.3 Recap

Equation C.1 and Equation C.2 define the phase of all potential discontinuities in
the current BTP state transition matrix. The actual values can be found by a
sitnple but tedious exhaustive search.

Discontinuitics in the previous BTP state transition matrix can be found by
substituting T3 — r for r and working backwards from the end of the period and
BTP. The union of discontinuity times for the current and previous BTP's is a
candidate discontinuity sct for the eigenvector function $;57}.

Appendix D

Theorem Proofs

This chapter provides proofs of the four theorems used in Chapter 6.

D.1 Notation and Definitions

The following notation is common to the proofs,

z,(t) = vector of the continuous-time states

z,(t) = vector of the sample-and-hold states

z4(t) = vector of the discrete-time states

X(¢) = the full state vector (2T 2T 2|7

X X(t) = full state vector covariance: E{X(t)X7(t)}

w,(t) = vector of the continuous-time process noise

w,(t) = vector of sampling errors

wy(t) = vector of discrete state update noise

n.(t) = augmented vector of continuous process noise = [wT 0}7
n4(¢) = vector of discrete process noise = [0 w¥ wl|T

103

104 Appendix D. Theorem Proofs

o N(t) = total process noise vector

o Wy(t) = state error weighting matrix for cost function

D.2 Theorems and Proofs

Theorem 1 Let z., be the partial state vector: [z zT]T such that
Zeg = [AB) 2y + 1y
where n., s white continuous process noise with covariance:

0
Iy 0

B{na(s)nL(t)} = [o o

]6(3-t)=Xf,6(s—t)

where 6(°) 1s @ unit impulse at zero.

If zz(t) = E{z(t)z%(t)} and there are no discrete transitions between t = 0
and t=1t, , then

zz(h) = ¢(t1)2z(0)d(t)T + Re(tr)
where ¢(s) = exp([AB]s) and
)
Ry(t) = [$(s) X59(s)7 do.
Proof: From linear system theory, for ¢t < ty,

a(t) = $(8)2a(0) + [$(s)nuls) ds.
So,
2a(t) = B{(8(6)2a00)+ [6(rIna(r)dr)
(L7 + [L) (s)ds).

The process noise is uncorrelated with the initial state so E{xz,,(s)n(2) = 0 for all
3 < t. Therefore, the cross products are zero. Evaluating the remaining terms:

E{$(t)z(0)s1,(0)67(8)} = $(t)E{z(0)2T,(0)}47(2)
= §(t)zz(0)p7(¢)

D.2. Theorems and Proofs 105

and
E{ /o t $(r)nes(r) dr /0 t nZ(s)¢7(s)ds
N E{/ot fot (r)nes(r)nky(s)¢7(s) dr ds}
N /ot 9(r) /(: E{ne,(r)ng(s)}¢7(s)dsdr
= [6r) X3¢ (r) dr.
Therefore,

a(t) = $(t)aa(0)7() + [$(r)XSHT(r) dr

Theorem 2 Let X = [z7 2T z]]7 be the full state vector. Let ¥y be a discrete state
transition matriz where
X(t%) = TaX(t7) + na(t)

and where ny(t) is white discrete process noise with covariance Ry.
If XX(t) = E{X(t) XT(t)} and the discrete transition Wy occurs at time ty,
then
XX(t3) = 04 X X(t5) ¥ + Ra.

Note: let Ry = [Ry;). Then Ry is zero unless Wy updates state § or state j.
Proof: From the state equation,
XX(t§) = B{(WaX(t™) + na) (X7(t)0] + n])}.

But E{X(t")n](to)} = 0 and E{n4(t;)n](¢,)} = &;; Ra.
So, X X(t3) = W4E{X(t)XT(t)}¥] + F{nyn]} = WaX X(t~)¥3 + Ry.

Theorem 3 Let X be the full state vector: [T 2T 2] and
X = G(1) X + N(v).

G(t) is stable usth a corresponding state transition matriz W(ty,t,). N(t) és white
process noise and E{N(r)NT(s)} = 6(r — s)Ra(s).
Let XX(t) = E{X()XT(t)}, to >ty > tug: e+, and limyesooo(ty) = —00.

106 Appendix D. Theorem Proofs

Then if R; = E{X(t;)XT(t;)} when E{X(t;-1)X7(t;i-1)} = 0 (i.e. the covari-
ance growth from t;, to t;) then

XX(to) = 3 U(to 1) Ri¥(to,)T

1=0

Proof: Let t_; be some time in the past. Then:

X(to) = Wto,t-)X () + | i. U(to,)N (r) dr

or
-(k-1)]
X(to) = ¥(to,t-00X(t0)+ L [Wt r)N(r)dr.
=0 Yh-1
So,

XX(to) = E{¥(to,t-1)X(t-k)XT(t-1)¥7 (to,t-x)}
—(k=1)
+ E{() /‘H \I'(to,r)N(r)dr) XT(8_) 07T (20, t-0)}

=0

~(k-1)

> [

jm0 Y=t

+ E{¥(to,t-1)X (t-k)(NT(s)¥7(to, 8)43)}

-(k-1) (k=1

%) £
+ B /‘M Y(to,)N(r)dr 3 /‘H N7 ()97 (b0, 3) ds)

{=0 J=0

XX(to) = W(toytar)E{X (1) XT(2-k)} T (20) 1)
=(k=1) .,
+ 8 [Wt E(NXT ()} ¥t)

=0 -1
=(k-1)

bWt T [BN ()0t o) ds

=0 Jhe
w(k—1) =(k-~1)

+ % 5 [e [1 E(NCINTN 0 0)ds b

=0 =0
Observe two things. First, the system is stable so E{X(£)X7(t)} is finite and
limgesoo W(to, tur) E{ X (2-4) X T(24)} 2T (20, ¢-4) = 0. Second, the noise is uncorre-
lated with prior noise and with prior states, Therefore, the cross contribution from
disjoint intervals is zero, i.e. E{W(s)W?¥(t)} = 0 when s and ¢ belong to different
intervals. Therefore, all the cross product (i # j) terms are zero.

D.2. Theorems and Proofs 107

So

Jm XX() = 3 [0T 0r) [BINGINT N (o 5) ds dr

=0V

f _/;.t‘ \I’(t(h T)R”(T)@T(to’ ?‘) dr.

1=0 ' hi-t

Each ¥(2o,t) can be factored as (o, £;)¥(t;,) so

0o 5

lim XX(t) = Y ¥(to, t:) [/ (i, P)Ra(r) BT (85, 7) dt| 2T (2o, 12).
koo =0 tie1

But the term in brackets is just R,, as defined above.

Theorem 4 Let X be the state vector: [z zT 2]|T such that

X=GX+N

where G 13 constant and N 1s while stationary process noise with covariance -

2, 00
X=|0 00
0 00

Let X X(t) = E{X(8,)XT(¢,)} and W§ be a symmetric matriz.
If there are no discrete transitions between time= 0 and lime= ¢, then
L
J(1,0) = E{ [x7twe .X(r)dr}
- 1
— % Y T w
= z(x,x O+ [%0)TWou(r) dr)
- ¢ o '
+ E(.’l’f* [[v ew, \P(s)dsdr.)

where J(¢,0) is part of the cost integral for the scgment (0,8), “«” denotes element- -

by-element matriz multiplication, & denotes the alyebraic sum of the matriz ele-
ABO

-mends, and W(t)=expj ! 0 0 0 |¢].

000

108 Appendix D, Theorem Proofs

Proof: From linear system theory,
X(t) = WOX©O) + [' U(s)N(s) ds.
So,
E(f X ()T W, X(s) ds)
E{f '(xT(O)\pT(r) +f NT(s)\IlT(s)ds)Wo
(\Ii(r).‘{(()) +]0 " W(u)N(u) du) dr).

But X(0) and N(t) are uncorrelated if ¢ > 0 so the expected value of the cross
products is zero. Therefore,

E{ [X(sYTWoX(5)ds)
= E{[XT(0)07(s)Wal(s)X(0)ds)
+ B '(A N"(s)xp’“(s)ds)wo([v) du) dr).
In the first term, the constant X(to) can be brought outside the integral,
B{ [XT(0)¥7(s)Wol()X(0) ds)
- E{me)([‘w"(s)w.,w(s)aa)m)}
= E(XX(to)+ ['wf(a)tvo~x:(s)as).

Likewise, the process noise is stationary aud the expected value operation will
vield a constant. Therefore, it too can be moved outside the inner integrals as

follows. For the other term,

E{f ' (/0 NT()97(s) ds) wo([w(u)zv(u)au) dr)
= B /':o] ;0 /;DNr(a)‘i'lr(a)WuW(u)N(u)dudsdr} '
= Ef j:__o J ;o(/;oﬁ(N(u)Nr(a)) # (¥7(5)Wo¥(u)) du) ds dr)

D.2. Theorems and Proofs 109

B / r=0 -li;o(jur:o BE{N(u)NT(s))} » (T (s)Wo¥(u)) d“) ds dr}
/ t_ ,0 EXQ (U7 (s)Wo¥(u)) ds dr}

0 Ja=

i

= X0« io [O Wab(s) ds dr}

V]

0 is a constant which can be brought outside the integrals.

since ¢

b 2k DA kb S a4 Mo ah b A b N TN ES E R N V. LD 1)

110 Appendix D. Theorem Proofs

Appendix E
Computer Codes

The algorithms for stability analysis and for asynchronous design were implemented
in PC-MATLAB and executed on an IBM-PC clone. The MATLAB code is close
to ordinary mathematical expressions and it is commented so these routines should
be useful without additional documentation. These same codes will run on some
Unix machines with PRO-MATLAB (a Unix version of MATLAB). The Unix hosts
(e.g. Sun 3) are much faster than the PC.

To use this software, load all the “.m” files in some directory where PC-MATLAB
will zun. Then, run "matlab” at the operating system prompt. Then, command
cither "design” or "analyze” at the MATLAB prompt *>>". Finally, answer the
questions (following each answer with a RETURN),

To run your own examples, use buildtla.n or builddin.m as a guide to cre-
ate a new buildxxx.m file for the system you want to investigate. Name your file
buildtla.m or builddin.a and run as before. Alternatively, use a new name for
~ your buildxxx.a file and patch the routines: analyze.w, design.m, and var.opt2.a
(xxxtheta) to use your file instead of builddin.m or buildtla.a.

The subroutines are arranged in three groupes:

e Utility Subroutines (may be called by analysis or design routines)
o Analysis Subroutines

¢ Design Subroutines

111

112 Appendix E. Computer Codes

E.1 TUtility Routines

E.1.1 Build Two-Link Arm System: buildtla.m

function [AB,DS,seqptr,Theta,varptr,w0,x0,BTP,keyseql=buildtla

4

% Buildtla loads the initial system description for Berg’'s two link-arm
% plant/controller. Final data from Berg’s Case i is used.

A
% Figure and table numbers refer to Berg’s Thesis.

The states are: x(1): hub angle, theta (see fig 6.1)
x(2): hub angle rate, theta dot
x(3): tip position, delta
x(4): tip speed, delta dot
x(5): sample & hold 1 (h1) (see fig 6.2)
x(6): sample & hold 2 (h2)
x(7): sample & hold 3 (h3)
x(8): slov discrete control state, ci
x(9): fast discrete control state, c2

€ 3L 3L L L L T 3L L I L 3L L LT

% Set sampling times (ref table 6.3)

fprint?(’\nloading two link arm plant/controller.\n');

keyeeqel; % the sequence that is the basis of the BPT
STP»1/36.566; ¥ short time period (synchronous)

LTPv8#STP; % long time period

4STPaLTP/(2epi); % short time period (asynchronous)

BTPsLTP; % basic time period

x.................. - - 0 0 o A O 0 b
1

% 'seqptr’ is an array that defines the sampling saquences. Segqptyr has
% a row for each synchronous sample sequence. Each entry in a row

% ropresents s continuous-time or discrete-time state transition.

% Positive entries represent continuous transitions for that duration.
% Negative integers indicate discrete-time transitions described by the
% corresponding block of DS (i.e. -1 and -2 for this problem). A zero
% (which may be required to £ill the rectangular array) represents no

% transition. The first element in a row is the first element in the

% soquenco (chronmological) which aust indicate a discrete transition.

E.1. Utility Routines 113

% The period of any sequence is the sum of the non-negative elements in
% she corresponding row of "seqptr".

% slow sample cycle, starts with Di, period=LTP
% fast sample cycle, starts with D2, period=STP

seqptr=(-1,LTP;
~2,8TP];

Yommmmmmmmem

%

% Theta is a vector of the variable parameters. These elements
% must be the same as their definitions in varptr. (ref table 6.5)

Theta=[-0.48499;
11.297;

0.39316;
-13.483;

1.0708;
-0.55327;
0.097632;
13.439;
-0.12129;
-16.865 J;

% -(alpha-1)
% beta-ii

% beta-12

% gamma-11
% gamma-12
% -(alpha-2)
% beta-21

% beta-22

% gamma-21
% gamma-22

% "varptr" is an array that defines each of the variables in "Theta".
% Each "varptr" row contains (type, row, column) vhere:

% type = O denotes the AR matrix

) type = j (j = positive integer) denotes the j’'th block of DS.
% The i’th row of "varptr" corresponds to the i’th variable in “"Theta"
% vhich belongs in (row,column) of the indicated matrix.

% alpha-i
% beta-i1
% beta-12
% gamma-1i1
% gamma-12
% alpha-2
% beta-21
% bera-22
¥ gamma-21
% gamma-22

z-.uu—--a—---du--u--u-----u‘----t----- L T - A WD P W A s A W

varptr=(1,8,8;
1,5,1;
1,6,3;
1,5,8;
.1,5,9;
2,9,9;
1,6,1;
2,7,3;
1,6,8;
2,7,9);
%

% for squarensss.

% AB is a concatination of the usual, continuouu-tino' +A and -B
% matrices (ABw[A,~B]), where xdot = 4 x ¢ B u) which is zero-filled
Negative feaedback is achieved by negating the B

114 Appendix E. Computer Cc‘

% matrix. All sample-and-hold states are considered to be inputs so B
% has a column for each hold state and these columns are sequenced like
% the sample-and-hold states. An all-zero column indicates the

% corresponding hold state doesn’t drive the continuous states. If

% the output of two holds is summed to drive a physical input, B will
 have duplicate columns. This approach allows the continuous state

% transition matrix for time "t" (with no discrete events during t)

% to be computed as:

% Psi(t)= [expm(AB*t), 0; 0, eye(nxd)]

4

% where nxd = number of purely discrete-time states.

]

4 In seqptr, AB (a continuous-time transition) is indicated by a

4 positive entry.

% In varptr, AB elements are indicated by a zero in column 1.

4

AB= [0, 1, 0, O, 0, 0, 0; % ref eq 6.4-6.10
0, 0, 0,0, -(2.3684), -(-22.934), -(-22.934); % and table 6.1
6, 0,0, 1, 0, 0, 0;
0. 0. 0’ 0. -(-101428). '(121059)0 -(121059):
0, 0, 0, 0, 0, 0, 0; % zero fill row
0, 0, 0, 0, 0, 0, 0; % zero £ill row
0, 0,0, 0, 0, 0, 0); % zero £ill row

S S - S —.

%

% "DS" is a concatination of all the discrete and sample state

% transition matrices (i.e. DS=[d1,d2,...8i,81,...]) in any order. For

% the TLA problem, di is the slov discrete transition and d2 is the

% fast state transition. The fixed elements are loaded now. Update is

§ called later (by “check") to load the variable elements (Theta) into
DS and AB.

DSw[eye(9) eye(9)];
DS(5,5)=0; DS{6,6)=0; DS(8,8)=0; DS(8,1)=1;
DS(7,16)w0; DS(9,18)=0; DS(9,12)m4;

z-un--------b--_uhu--_U-dununuunuu - S P) Wb W A U O B D D B B U s 5 0 s

%
% Dofine cost weighting parameters for optimization

% state error veighting coefficients for cost function

wO=[21 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1850 O 0 0 0 0 0

E.1. Utility Routines 115

0) 0 0 0) 0 0 0
0 0 0 0 1 0 0 0 0
0 () 0 0 0 69.44 69.44 O 0
) 0 0 0 0 69.44 69.44 O 0
0 0 0 0 0 0 0 0 0
0 0 () 0 0 0 0 0 01;

% process noise covaraence (future use)

x0=[0 0 0 0 0 0 0 0 0
0 915.48 0 -2976.4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 -2076.4 0 14874.1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 () 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 01];

% special code to chack sensitivity to semi-definite XO & WO
%v0=w0+1*qye(w0);

%x0=x0+1%aye (v0) ;

% end of spacial test code

Yommmmmmmame————e S SRR —— ——

fprintf(’ Load complete. Berg case 1 data used.\n\n’);
return

% end of the buildtla t@ction $$8533353555385353858585358388838338833838

E.1.2 Build Double Integrator System: builddin.m
;unction [AB,DS,seqptr, Theta, varptr,v0,x0,BTP,keyseq)ubuilddin

% Builddin loads initial system description for the double integrator
% plant/controllexr. eséses fourth-order version sesses

%

%uu&----u--—u—-ﬂ---—--u----u ------- D 0) A U 0 D 6w i e T Wt o D At Bk B s 4O e A S A g b B D A N

The states are: z(1): first integrator output
x(2): second integrator output
x(3) : sample and hold output (proportional)
x(4): sumple and hold output (rate)

M I I LT

116 Appendix E. Computer Codes

fprintf(’\nLoading for 4th order double integrator/conmtroller.\n’);

7. o P e D P e D D s W o
kayseq=1; % the sequance that is the basis of the BPT

%keyseq=2; % the sequence that is the basis of the BPT

STP=1.0; % first time period

%STP=1.1; % first time period

%LTP=1.0; % other time period

WLTP=1.4; % other time period

LTP=.9; % other time period

%BTP=STI; % basic time period

ABTP=LTP; % basic time period

BTP=9; % basic time period

7‘ -------------------------------------- oy on G D G D S AR U T Sy S M D W NS A TR, W W

% Theta is a vector of the variable parameters. The order of these
% elements must be the same as their definitions in varptr.

Theta=[0.5; % +(ct) % so-called nominal gains
: 0.5; % +(c2)
2.0]; % +(c3)

% Theta=[1.121; % +(c1) % optimal asynchronous gains
% 0.499; % +(c2)
% 1.628]; % +(c3)
% Theta={0.666; % +(c1) ¥ optimal synchronous gains
% 0.115; % +(c2)
% 1.026]; % +(c3)
x ------ R DD W 0D P N B I b W G NS D P A 0 b S s B & BB | b o e 0 650 G) M5 b U0 06 ¥ G S D 4D 06 1 VR 0 1D W G0 W 4 4 4B
%

% "seqptr" is an array that defines the saupling sequences. Seqptr has
% & rov for each synchronous sample sequence. Each entry in a row

% represents a continuous-time or discrete-time state transition.

% Positive entries represent continuous transitions for that duration.
% Hegative integers indicate discrete-time transitions described by the
% corresponding block of DS (i.e. ~1 and -2 for this problem). A zero
% (which may be required to fill the rectangular array) represents no

% transition. The first element in a row is the first element in the
% smequence (chronological) which must indicate a dimcrete transition.

% The period of any sequence is the sum of the non-negative elements in
% the corresponding xow of “seqptr".

seqptr=(-1,STP,0; % proportional feedback event

E.1. Utility Routines 117

-2,-3,LTP]; % rate feedback event

Y -— emmmma e mm—m—n———mmm——————————————— e e e

%

% "varptr" is an array that defines each of the variables in "Theta".
% Each "varptr" row contains (type, row, column) where:

% type = 0 denotes the AB matrix ‘

4 type = j (j = positive integer) denotes the j’th block of DS.
% The i’th row of "varptr" corresponds to the i’th variable in “"Theta"
% which belongs in (row,column) of the indicated matrix.

varptr=[1,3,2; % ct

2,4,2; % c2

3»4.4]; % c3
S ceccemecrceseosnmaemeee——————————————
%

% AB is a concatination of the usual, continuous-time +A and -B

% matrices (AB=[A,-B], where xdot = A x + B u) which is zero-filled for
% squareness. Negative feedback is achieved by negating the B matrix.
% All sample-and-hold states are considered to be inputs so B has a

% column for each hold state and these columns are sequenced like the

% sample-and-hold states. An all-zero column indicates the

% corresponding hold state doesn’t drive the continuous states. If

% the output of two holds is summed to drive a physical input, B will
% have duplicate columns. This approach allows the continuous state

% transition matrix for time "t" (with no discrete events during t) to
% be computed as:

%
§ Psi(t)w [expu(ABet), O0; O, eye(nxd)]
: vhere nxd = number of purely discrete-time states.
% In seqptr, AB (a continuous-time transition) is indicated by a
% positive entry.
% In varptr, AB elements are indicated by a zero in column 1.
‘B. [o. 0. -1. -1.
1. o. 0. 0.
o, 0, 0, O,

0,0, O, 0];

z------.-— - - - - e s e s 0

%

% "DS" is a concatination of all the discrete and sample state

% transition matrices (i.e. DSe[d1,d2,...s1,81,...]) in any order.

% For the DINT problem, position fesdback discrete state transition and

118 Appendix E. Computer Codes

% d2 is the rate feedback state transition. The fixed elements are
% loaded now. Update is called later to load the variable elements
% (theta) into DS and AB.

DS=[aye(4) eye(4) eye(4)];

DS(3,1:4)=[0 1 0 01; % DS(3,1:4)= [0 c1 0 0] after update
DS(4,5:8)=[0 1 -1 0]; % DS(4,5:8)= [0 ¢2 -1 0] after update
DS(4,9:12)=[0 0 0 -1]; % DS(4,9:12)= [0 0 0 ¢3] after update

You -
%
% Define cost weighting parameters for optimization

% state error weighting coefficients for cost function

wo=(1 0 0 0

0 1 0 0

0 0 0.1 0

0 0 0 0.1 1;

% process noise covarience

x0={0 0 0 0

0 1 0 0

0 0 0.1 0

0 0 0 0.1);
z------‘--‘------”‘--.--'.----‘-“ - - - -we
fprintf(’ Load complete. \n\n’);
return

% end of the builddin function $$$3$333835$335838388888338888588883335448

E.1.3 Check Dimensional Consistency: check.m

;unction consta=check(AB,DS,seqptr,theta, varptr,¥,x0,BTP, keyseq) ;
fprint? (*Checking dimensional consistency and computing [consts].\n’);

% 'consts’ is used by mcst other functions.
% 'consts’ = [nx,nxc,nxs,nDS,nvar,nvarc,nseq,seqlen,keyseq,BIP,

% fastseq,trainlen,speriod]

% where:

% 1. nx = total number of states

% 2. nxc = number of continuous states (A is nxc by nxc)

) 3. nxs = number of sample and hold states (B is nxc by nxs)

E.1. Utility Routines 119

% 4. nDS = number of blocks in DS

% 6. nvar = number of variable parameters

% 6. nvarc = number of continuous (i.e. in AB) variable parameters
% 7. nseq = number of sample sequences

% 8. seqlen = length of longest sequence

4 9. keyseq = index of sequence synchronous with BTP

% 10. BTP = basic time period

4 11. fastseq = index to shortest sequence

% 12, trainlen = length of shorter train

h 13. speriod = period of shortest sequence

% Also: nxd = number of discrete states (nx = nxc + nxs + nxd)

% ABwide = nxc+nxs

% DSwide = nxs+nxd

% phirow = block index to last row (phi’s) in pc_phi arrray

% m is a dummy variable
consts=zeros(1,13);
[consts(1) ,m]=size(DS);
consta(4)=fix(m/consts(1));
if rem(m,consts(1)), errmsg(’ERROR, extra/missing DS columns.’); end;
(m,ABwide]l=size(AB);
if m"=ABwide, errmsg(’DATA ERROR, AB matrix isnt square.’); end;
consts (2)smax(find(any(AB’)));
consts (3)=ABwide-consts(2);
[consts(5) ,m]=size(varptr);
if m*=3, errmsg('DATA ERROR, varptr does not have 3 colummns.’); end;
if consts(5)“w=length(theta),errmsg(’ERR, theta varptr mismatch.’);end;
consts (6)msum((varptr(:,1)==0));
[consta(7) ,consts (8)1=size(seqptr);
if consts(8)<2, errmsg(’ERROR, longest sequence has i event.’); end;

% check "varptr" consistency
for isi:consta(6),
it varptr(i,1)<0, errmsg(’DATA ERROR, varptr(i,1) is negative.’); end;
selectm=abs(varptr{i,i));
if select>consts(4), errmsg(’ERROR, varptr(i,i) > DS size.’); end;
if rem(select,1)“=0, errmsg(’ERROR, varptr(i,i) not integer.’); end;
rowsvarptr(i,2); colwvarptr(4,3);
if row<i, ermmsg(’'DATA ERROR, varptr(i,2) <=0.’); end;
if col<i, errusg(’DATA ERROR, varptr(i,3) <=0.’); end;
if selectu=Q,
i? row>consts(2), errmsg(’DATA, varptr(i,2) exceeds AB size.’); end;
if col>ABwide, errmsg('DATA, varptr(i,3) exceeds AB sizu.’'); end;
olse,
if row>consts(1), errmsg(’DATA, varptr(i,2) excesds DS size.’); end;
if cold>constu(1)*consts(4), errmsg(’varptr(i,3) exceeds DS.’);end;
end; % ond if selectu=O-else
end; % end for-loop

D e e e e e e e A -2 G ot P — -~ a4y

120 Appendix E. Computer Codes

consts(9)=keyseq; % sequence synched with BTP
consts(10)=BTP; % BTP

% compute data for train calculations
etimes=seqptr.*(seqptr>0); % elapsed time increments
periods=sum(etimes’); % periods of sequences (row)

[consts(13) ,consts(11))=min(periods); % shortest period
otimes(consts(11),:)=zeros(1,consts(8));% zero-out short saquence

bigno=max(max(etimes)); % largest element
etimes=etimes+bigno* (atimes==0) ; % set all the zeros tc bigno
ot=min(min(etimes)); % shortest etime in slower sequences
consts(12)=fix(min(et/consts(13))-1); % minimum cycles in train
consta(12)=max([1 consts(12)]); % avoid zero length train
consts(12)sconsts (12) sconsts(13); % minimum train length (time)
fprintf(® Check complete.\n\n’);

% ond of procedure check $$$$$$$35$3S$53385883S88588558588888858888883

E.1.4 Install Gains in System: update.m

function [AB, DS] = update(AB,DS,vars,varptr,conats);

%

% This function updates the AB and DS matrices to reflect the ’'nev’

% parameters in 'vars’. Also, if? AB is changed, reset is set to one;
% othervise it is zero.

nx=consts (1) ; % total number of states
nvarsconsts(5); % nunber of variable parameters

for isi:nvar,
selecteabs(varptr(i,i));
rousvarptr(i,2); colsvarptr(i,3);
if salocten),
i? AB(row,col)”wvars(i), AB(row,col)svars(i); end;
alne,
DS(row.((select-1)enx+col))uvars(i);
end; ¥ ond if-elne
end; % end for-loop

% ond of update function $$$3$35485383388383588588835885388883888388588¢

E.1.5 Find Phase of ¥ Discontinuities: cases.m
function [ctimes]=cases(flag,DS,seqptr,consts);

;!t)

i

.-",‘ ey :

It E.l. Utility Routines 121
1::;:;:

':!‘.‘?i

f

Sty 4

:*:::: % This function computes the phase delay time boundaries which partiticm
.:::.:, % the sample schedule offset (tau) into regions of continuous Psi(tau).
;a:‘y:c: % If flag=0 the continuity of the current Psi(k,tau) is considered. If
B % flagei, the continuity of Psi(k-1,tau) of the following BTP is

D) % considered too.

g % ’ctimea’s[0] if nseqel. ctimes=[0 tau-max] if otherwise synchronous.
A '

f;::' % T T PR P e P

3;%:} % % This version is limited to nseq=i or 2. *»

:.:g 4 VRAREBRER B RNEBEEREREBR SRR SRR REBRERR SR SRR SR &

!

E;:-‘v;“ , tprintf(’Finding all continuous regioms ... ’);

F

s nx=consts(1); % total number of states

RS nseq=consts(7); % number of sampla sequences

LN seqlen=conata(8); % longth of longest sequence

) kaeysaq=consts(9) ; % Index to sequence synchronous with BTP

RS BTP=consts{10); % basic time period

hity tol=1.0e-10; % tolezence for same event times

b

}*" varseqe3-keysaq; % index to async sequence (keyseqel => varseq=2)
W

if (flag™=1)&(flag"=0), errmag(’flag out of range in cases.’); end;
if nsequwsi; ctimes=[0]; return; end; ¥ single sequence case -

if neeq>2, errmsg(’EXECUTION ERROR, Mors than 2 sequences.’); end;
i? keyseq>2, armg(EXECUTION ERROR, KEYSEQ more than 2.'); end;

S "
XD E N
™.

)

X

. 12 keyseq<i, errmsg(’EXECUTION ERROR, KEYSEQ lems thau i.'); end;
LA . '.. : : a

J etimes=(saqptr .+ (segptr>0)); % elapsed tizms intervals
:;;':f;; poriod-sum(otim"). % 'periodq' ot aoqao{xcu'

cycles(keyseq)=tix(BIP/period(keyssq));

-

2o

v o

N i rea(BIP,pericd(keyseq)) «0, srrmeg(’Key anuonco in uync.‘). tnd :

PAt cycles(varseq)»fix(BTP/period(varseq)); % m&x # full cycles in BIP

9 saqrepwren(BTP, poriod(varseq)); 1 remainder

q % cases with different numbers of full cyclss in BTP
ctimas=[0]; % starting points (min tau)

s it seqremes0, return; end; ' % all sequences syachronous

L ctivesw[ctimes,seqren); % curxent BTP looses 1 cycle

@ if flage=y; % previous BiP gains one cyclo

Wi Ltenperan(2eseqren,pericd(vareeq)); _

Ay ctines={ctizes,tenp];

end; o

A ctimes=[ctimes.poricd(varseq)]; % ead point (max tau)

i

(N % cases vbere discrete transitions don’t comaute

'f: |

;,- ‘

i

L

et

" a

s

N

br

s
A

122 Appendix E. Computer Codes

% Test all cases where:

% iisperiod(keyseq)+etimes (keyseq,j1) =
% i2speriod(varseq)+etimes(varseq,j2)+tau < BTP
9% i

% vhere: i1,12,j1,j2 = non-negative integers & 0 < tau < period(varseq).

lim k1=0; lim_kusfix((flag+1)sBTP/period(keyseq));
lim_v1=0; 1lim_vu=tix((flag+1)*BTP/period(varseq));

for it=-1im X1l:lim_ku, % full periocds of keysegq
tk=il*period(keyseq); % time for full periods
for ji=1:seqlen, % part periods of keyseq
it etimes(keyseq,ji)>=0, % test for continuous
tkatk+otimes(keyseq,j1); % event time
it (tk>0)&(tk<(flag+1)+BTIP); % event in BTP range
for i2=lim_vl:lim_vu, % full varseq periods
tv=i2eperiod(varseq); % time for full periods
for j2=1:seqlem, % part varseq periods
if etimes(varseq,j2)>=0, % test for continuous
tvatysetimes(varseq,j2); ¥ event timoe w/o offset
it (sv>0)&(tvetk); % event in BTP & taw>)

it (tk-tv) < pericd(varseq), ¥ if offset < period

: : % check for diacrete, nen-commuting transitions
spindx(keyseq)=ji; spindx(varseq)wj2;

spindxz (keyseq)wspindx(keynaq)+1;
spindx(varsey)wspindz(varseq)+l;

spindz=apindx- (spindx>seqlen)eseqlen;.
koytypa=-eeqptr(keysaq,spindz(keyneq));
vareypeswaaqptr(vuuq.apindz(varsoq))i

B ¢ 5 koytyp030 A ~ % ayach event discrete
if vartyper0, o % amynch event discrete
- tempimDS(:,{1+(keytype-1)eax): (keytypasax))e. ..
' 0S(: (14 (vaxtype-i)enz): {vartypesns));
tezp2=DS(:, (3¢ (vartype~1)enx): (vartypesuz))e. ., -
DS(:, (14 (Eaytype~1)enx): (loytypotn!)).
it any(any(tnmpx tezp2)),
_ ct&m-[ctma.{tl-!:v)]. end; % non comauting
end; end '
% check colplexa, ctimes set if‘ahu;rcu_ & pon-comneing -

end; Iond: end; and; vad; aend; end; end; end; % end _a}.},-,it"s & .io'r“i

¥ patch heta to force an additional zeglon{s) -

% ctimeswfctines .35 445 . Sa],.,
% ond Qt #special pat»h

E.1. Utility Routines 123

ctimes=sort(ctimes); % sort sequentially
ctimes=ctimes.*(ctimes>0); % remove negative times
cases=length(ctimes)-1;

unig=[1, ((ctimes(2:cases+1)~-ctimes(1:cases))>tol)];
ctimesnctimes(uniq); % eliminate duplicates

fprintf(*\n’)
% end of function cases $$$SEFSSESSESIISILEIIESESESISTIE888838888888

E.1.6 Display Time and Date: shotime.m

function chotime(clock)
% Display time and date on screen in standard format

fprintf(’\n’);
fprintf(int2str(clock(4)));
fprintf(’:*);

fprintf (ine2str(clock(6)));
fprintf(’:?);

fprintf (num2str(clock(8)));
fprintt (’)

fprintf(int2str(clock(2)));
fprintf(’/*);
fprintf(int2str(clock(3)));
fprint£(?/?);
fprintf (int2str(clock(1)));
fprintf {’\n’);

% end of utility function shotime $$$$$5$858888888858888848488858488

|. \0 iy TR AT 24 ; 4 Ped e G Wa ¥ J X {) B av H), s 3 Y0 N\ v} ' MALNY -3 e
By T R R K R A e R B S SR AN

o

124 Appendix E. Computer Codes

o T e ol M .

H

E.2 Analysis Routines

E.2.1 Top-level Structure

T +
| ANALYZE |
e TR +
|
L L S + +
| | | |
D Lt L + 4mecce== + temccce-o LR L +
| BUILDTLA | | CHECK | | UPDATE | | MRAS |
| BUILDDIN | +~==---- + d-oeocee- + deeeesn +
$ovmmmm—ane + I
domssvana +
| |
T + drmomen +
| CASES | | PSIX |
L D $ dmmcmee +

E.2.2 User Interface: analyze.m
% DRIVER SCRIFT FOR MULTIRATE ASYNCHRONOUS STABILITY ANALYSIS

shotine(clock); % time hack to estimate compute time

AT T T T T P T e T L P D A T TR TP e e Y
This block creates the plant and cost function

description matrices. Replace this block with code,

input statements, and/or function calls that will create

AB, DS,seqptr,theta,varptr,¥,x0,BTP,and keyseq for

the aystem you want to analyze.

L L L PE T

% LOAD PLANT & INITIAL CONTROLLER NODELS.
ssel=input(’Select system: 1 => tla, 2 = dint: °);
if ssolmey,
(AB,DS,seqptr, theta,varptr,¥,x0,BIP, keyseql=buiidtlia;
olse,
it asolw=2;
(AB,DS,seqptr, theta, vaxptr,¥,x0,BTP, keyseq]l wbuilddin;
else,
fprintf(’\n Unknown systea type...abort run. \n’);
end;
end;

% SELECT INITIAL GAINS (thsta)

I TR S S e i e e e A T O S R 1 DAL AT A L T LN A A N A N LI Y TR R A P IR SR BN AR

E.2. Analysis Routines 125

tsel=input(’Select initial theta; 1=>last run, 2=>loaded values: ’);
if taqlumi, % load last saved theta vector

it ssel==1, load tlatheta.mat, else,

it ssel=s2, load dintheta.mat, end; end;
end;

7.*#t***t*tttt*tt#t*t**********t*****#t#t**tt**t*t*t#t*****#*************

% VERIFY DIMENSIONS AND COMPUTE ([consts]
consta=check{AB,DS,seqptr,theta,varptr,W,x0,BTP,keyseq) ;
consts(15)=.5; % assume stable with initial gains

% INSTALL THETA VALUES IN AB AND DS MATRICIES
(AB, DS] = update(AB,DS,theta,varptr,consts);

% DISPLAY INITIAL GAINS
fprintf(’\nTheta = %2.3g’,theta(l));
for jpe2:consts(5) fprintf(’ %0.3f’,theta(jp)); end;

fprintf(’\n\n’);
% shdkssue CALL MULTI-RATE ASYNCH STABILITY EVAL ROUTINE ®éwkwins
shotime(clock); % time hack to estimate compute time

fprintf(’Compiling asynchronous stability test code: ..’);
stabilitysmraa(AB,DS,seqptr,consts);

fprintf(’ The average stability figure is: %g’,stability);

The resulting stability figure is analogous to the real part
of a continuous-time pole. '"stability"<0 implies the systenm

is stable with the orror state decay rates bounded above
(on average) by exp(stabilityst).

P LI PFEFC

wesessssssnnss END OF EVALUATION CALCULATIONS sevneesssssssisns
shotime(clock); % time hack to estimate compute time

% ond of main program $33$3$$3535338553535885383888888388835338888838888

E.2.3 Main Program: mras.m
function stabilitysmras_eval(AB,D3,seqptr,consts);

% Evaluates multi-rate asynchronous stability. ’stability’ is
% analogous to an upper bound on the real part of the poles of
% a linear, time-invariant continuous-time system.

126 Appendix E. Computer Codes

% Ak kR R R R R O R
h ** This version is limited to nseqs2 *
% T T T T D e R E

fprintf£(’ Compile complete.\n’);

% Ardokkkkkakkkkakkkkbkk SET CONSTANTS dkkdiiiokkiddinikikkikkihk

nx=consts (1) ; % number of states

nxc=consts (2) ; % number of continuous states
nxs=consts(3); % number of sample & hold states
nseq=consts(7); % number of sequences

seqlen=consts(8); % maximum sequence length
keyseq=consts(9) ; % Index to sequence synchronous with BTP
BTP=consts(10); % basic time period

fastseq=consts(i1); % fast sequence number
trainlen=consts(12); % length of shorter train
speriod=consts(13); % period of shortest sequence
varseqs3-keyseq; % Index to sequence with variable phase
ABwidemnxc+nxs;

cycles=round (trainlen/speriod) ;

tol=0.01; % tolerence for integral convergence
maxstep=.i*speriod; % maximum integration step size
minsteps.0issperiod; % minimum integration step size

% sessvsunspsssnssnsnnss SET ARRAY INDICES wssssssssphsusssnthbns
colsmiinx; offcola=cols-nx;

phirowse1:nxc; phicols=1:ABwide;

DSrows=anxc+i:nx;

Y esssnenenssnenenesenss COMPUTE TRAIN STH’s ssesessusssnsnsss
colselw~geqptr(fasteeq,i)snx+offcols; % DS cols for end events

Psi=DS(:,colsel); % initial Psi
for j»2:meqlen;
isp=-segqptr(fastseq,j); % event identifier
iz iap>0, % discrete transitiom
Psi(DSrows, :)=DS(DSrows ,0ffcola+ispenx) «Psi;
else, ¥ isp must be ¢ O % continuous time transition
phiwexpm(-ABeinp) ; % continuous STH (isps~t)
Pai(phirovs, :)wphi(phirowus,:)sPsi(phicols,:);
end; % if 1sp>0 ... else ...
end; % for j»2:seqlen % no more discrates in speriod
trainsePsi-cycles; % Extend to ’cycles’ periods
trainse=[trains Psietrains]; % Extend to 'cycles+i’ periods
trains(D3xovs, :)«DS(DSrows,colsel)*trains; % Final discrete event

Y wevsrsnsnnssnnssntiiss INTEGRATIONS sosoasssniassessassstsessiss

R AR A M ek W A LRI T AL S AR AT I I IR B AT WA Y B W LW P A0 LD ST ML N L N AT N SRR LT

E.2. Analysis Routines 127

brktimes=cases(1,DS,seqptr,consts);
nzones=length(brktimes)-1;
phasing=zeros(nseq,1);

varseq=3-keyseq; % index to slipping sequence
ets=gseqptr(varseq,:); % pointer row for slipping sequence
vperiod=sum(ets.*(ets>0)); % period of slipping sequence
slip=rem(BTP,vperiod) ; % phase decrease in next BIP

plott=[]; plotSR=[]; plotSIG=[]; % clear plot data arrays
I_1nSR=0; I_1nSIG=0; stab=0; % initialize log integrals to zero
%fprintf (’Slipa¥%f\n’,slip);

% phasing(varseq)aNextTautvperiod*((NextTau<0)-(NextTau>vperiod));
for zone=i:nzones; % step through zones
tau=(]; LSR=[]; LsSIG=(]; % null out data vectors

tssbrktimes(zona);
te=brktimes(zone+1);

tau(1)=(te+ts)/2;
fullspan=te-ts; % tau range of interval
span=fullspan; % Euler integration step size

, oldpoints=0; % no. previous data

SR newpointasi; % start with 1 Euler point

* Zstab=0; % initialize zone stability figure

R good=0; % assume integral not converged

M

\

fprint?(’\nZone Start Taus}f, Zone End Taue %f\n’,ts,te);

%
e
P a

DT

e

vhile good==0, % repeat until integral converges
%fprintf(’oldpointas=¥.0f, newpoints= %.0f’,oldpoints,newpoints);
%2print2(’, tau range= %g, integ steps=iig.\n’,fullspan,span);
newindx=(oldpoints+1i) :nevpoints; % indices to nev points

PR .

b Dl oty

_ 5§: for isnewindx, % compute data at newpoints
Wy phasing(varseq)stau(i); % phase for current BTP
;‘Q_ (ThisPL,ThisSR])=psix(phasing,AB,DS,seqptr,consts,trains,...
) cols,offcols,phirows,phicols,DSxous,1);
i LSR(1)=log(ThisSR) ;
® NextTauwtau(i)-slip; % phase of next BTP

phasing(varseq)=NoxtTausvperiods ((NextTauc0)=-(NextTaudvperiod));
(NextLPI]=psix(phasing,AB,DS,seqptr,consts,trains,cols,...
offcols,phirous,phicols,DSrows,2);
LSIG(4)wlog(norm(NextLPIsThisPL));
%fprintf{’stop=¥.0f, phasing=¥g, LSRe¥g’,i,tau(i),LSR(1));
Yeprinte(’, LSIGw%g.\n’,LSI1G(1));
ond; % for {wnewindx
% add nev data to plot vectors

plotte=[plott; tau(nevindx)];
plotSRe[plotSR; LSR(newindx) '] ;
plotSIGs[plotSIG; LSIG (newinds)’];

Q,l d J . o \
iRt PR A LR ph By Ry

SO
o
\ ‘{::gf 128 Appendix E. Computer Codes
W
A
EXY % save mrasdat plott plotSR plotSIG ¥ comment out for clean output
50 shg
' ;:gt‘ plot(plott,plotSR,’x’,plott,plotSIG,’0’);
AN .
\\S‘:‘, % compute/compare integrals
" ILSR=gpan*sum(LSR) ;
. -}q:‘;': ILSIG=span+*sum(LSIG) ;
' ;::l;*: oldzstab=zstab;
W zstab=ILSR*ILSIG;
' e:,:t; error=abs((zstab-oldzstab)/zstad);
;ﬂ-‘fa %fprintf(’ Integral 1n(SR)=%g, Integral 1n(SIG)=Yg\n’,ILSR,ILSIG);
\ %fprintf(® Zone Stab(N/0/C)=%.4g/%.4g/%.4g.\n’,zstab,0ldzstab,error);
9?;,: it span<minstep, good=-i; end; % convergence failure
o if (error<tol)&(span<maxstep),
- e goods=1;
:’t:::t else, % if (abs(...))
Atk span=gpan/3; % cut integration step size by 3
.o oldpoints=snewpoints; % remember old number of points
ot newpointss3+*oldpoints; % set new number of points
g:q % tau=[tau; tau-span; tausspan] ; % new phase time vector
. ;s:: b end; % if (abs(...)) else
' ,';:;;E: end; % vhile good=s=0
A
., I.1nSR=I.1nSR+ILSR;
: s‘;is‘g, I.1nSIG=I_1nSIG+ILSIG;
Z:;:l:'! atab=stabezatab;
_ﬁfo{,:,v fprintf(’Zones 1-%.02: I_1n(SR)= ¥%.3g’,zone,I.1nSR);
.}:}:.t: fprintf(’, I_1n(SIG) = %.3g, Stabs ¥.3g. \n’,I_1nSIG,stab);
shaly end; % for zone=i:nzones
v)) save mrasdat plott plotSR plotSIG
N stability=(stat/ (brktines(nzones+1i)-brktimes(1)))/BIP;
Il‘)Q' .
"‘“‘;“' r‘turn »
el
¥
: "ﬁ‘go:. % end of function mras $$3$$$$383385858585885858538888833823385858388888
L t‘.
ROUG
()
A E.2.4 STM Calculation: psix.m
AL
YA tunction [Pout,SR}=...
;_ X psix(t2go,AB,DS,sptr,con, traing ,cols,offcols,phirous,phicols,DSvovs,s2lag) ;
HI
o % state transition matrix/factors for mras.a
o
ey t0ut2go;
:;;;:}é‘ nxscon(1); nxcwcon(2) ; nxs=con(3) ;
i ‘;{ nvarscon(6) ; nvarcecon(6); nseqecon(7) ;
A seqlenwcon(8); BTP=con(10); fastsegecon(1l);
trainlenwcon(12); speriod=con(13); ABuidewnxcenxs;

0 ﬁ.{‘,

O O A AOA RSO O EAR AL ML S A CRAKTRA KA &
"‘3‘ ‘*‘“‘;““‘,&:."‘e‘\‘"."‘-"'.." "-‘ . .T.R.- AT 5" N .‘\'\'..' "ePf‘xi‘t"“','?I."—'*"\“’\“’:‘9".'

' :;:E:: E.2. Analysis Routines 129
i |
3:;:% % PART 1: COMPUTE STM FOR BASIC TIME PERIOD
- et
::,',::' A Set Pointers for Initial Discrete Events------<=-v--==-
S0 % t2go(i) will be the time from BTP start to the first discrete
Y % event for each sequence. ’sptr(i,spindx(i))’ defines the event.
__':;;l:e_ done=1; spindx=ones(t2go)*seqlen; laststep=zeros(t2go);
. »:::c: while done>0; % .ompletion flag
':'e::' for i=i:nseq,laststep(i)=sptr(i,spindx{i));end; ¥% index to last event
BN laststep=laststep.*(laststep>0); % mask discrete events
. backstep=(laststep<t2go) ; % boolean
S done=sum(backstep) ; % 0 if domne
R\ t2gost2go-backstep.*laststep; % adjast t2go
::‘ t2go=t2go.*(t2go>0); % eliminate any negative times
. spindx=spindx-backstep; % adjust index
':;ﬂ{: spindx=spindx+seqlen*(spindx<1i); % fix possible wrap-around
o ond; % while done»0
;;\:; spindx=spindx+1; % set to current event
."c“z: spindx=spindx-(spindx>seqlen)*seqlen; % fix wrap-around
R
;}?.?gf % Compute Psi, the STM for specified t2go,========m==~--
B :
{ % INITIALIZE
N zarotolmeps*BTP; '
:'c::: done=1; elaptime=0; % time into BTP
u:?,:ﬂ (t1,i1]=min(t2go); % time to first event
il isp=~sptr(il,spindx(i1)); % identify first stm
Al Psimeye(nz); % initialize Psi
») % QUICKIE IN'[TIAL DISCRETE EVENT IF PRACTICAL
oy it isp>0, % first event discrete
Yy ?\ blknl-iuptnx*otfcola ;
,a,;; PsisDS(:,blksel); -
i spindx(i1)wspindz(i1)+1;
' ..'x end; % if impd0
- % MAIN STATE TRANSITION MATRIX (stm) CALCULATION LOOP
o vhile done>0, ¥ main Psi loop
W 12 (olaptime::i+zexotnl)>=BIP, t1sBTP~elaptime;done=0; end; % last step
‘;1;3 spindx=spindx-(spindxdsaqlen) #seqlen; ¥ fix any wrap-around
e if ~1¢w0, % t1=0 w>do next event now
o . aymsort(t2go); - ' % find next event time too
‘i;t‘i 12u8t(2); - ' % time to second event
En R ¢ 4 (11uhatuq)t(t2>-trainlon)t(npind:(il)--i)t.. .
Vil ((trainlentelaptime) <BTP), % next event is a train
;:{}v * % TRAIN EVENT
) colselwzola; dtetrainlen; % use short train indices

-._ it (c2v=(dtesperiod))&((dt+elaptimessperiod)<BTP), ¥ k cyclas

T T 0n RTe Ll Nt ATy Ry Rrr L oRTR Ry Ap UTe KT8 17, RV T AN L AR RTe) o 8 o bW 4P e F T 6T KV 0p AT W 1L Ry 100 T 80y 87y 43, NP i 48y 4T 4

130 Appendix E. Computer Codes

colsel=colsel+nx; dt=dt+speriod; % use long train indices
end;
stm=trains(:,colsel);
Psi=stm*Psi;
t2go=t2go-dt;
elaptime=elaptime+dt;
t2go(il)=t1;
else, % next event NOT A TRAIN EVENT
isp=-sptr(ii,spindx(i1)); % event identifier
if isp>0, % isp points to DS block
% DISCRETE EVENT
blksel=isp*nx+offcols;
stm=DS (DSrows,blksel);
Psi(DSrows,:)=stm«Psi;
else, % isp must be < O % i.e. continuous segment
t2go(i1)=t2go(il)~isp; % increase that t2go element
end; %if isp>0 ... else ...
end; % if (ii==fastseq ... else ..
spindx(i1)=spindx(i1)+1; % increment sequence index
else, % if (vi<s 0) i.e. t1>0 => time passes, continuous segment
% CONTINUQUS TRANSITION
phi=expm(AB*t1) ;
Psi(phirows, ;) =phi(phirows, :)#Psi(phicols,:);
elaptime=elaptime+ti;

t2go=t2go-t1;
end; % if t1 <=0 ... else ...
(t1,i1)=min(t2go); % next event & its sequence
end; % while elaptime+ti<BTP % no more discretes in BTP

fusdiissssnessuvsneressEnd of Pal Calculationvsesssnssssssssun

% PART 2: COMPUTE BALANCED FACTORS FOR STABILITY TEST
% sflagee} --> factors for "current" BPT (lambda + delta)
% sflages2 --> factors for "next" BTP (delta only)
(P Ll=eig(Psi);
PIwinv(P);
L=diag(L);
SRenoxm(L,int);
Lusqrt(L/SR) ;
for isi:nx
pP(:,1); npsnoxn(p);
pinvePI(4,:); npi=norm(pinv) ;
baleaqre (npi/np);

if sflage#2, Pout(i,:)=pinveL(i)/bal;
elme, Pout(:,i)=peL(i)sbal; end;
end; % for isi:nx

E.2. Analysis Routines 131

return;

% end of function psix $$$$$$$3$$SSSSSISESESISSSEIESSSS$3888888888

[U L S T o A L T R P L D VT R g v Pt N uT s BT R R VY Y., Y T LY T A, QT Ry, Ty ey 19 %

132 Appendix E. Computer Codes

E.3 Design Routines

E.3.1 Top-level Structure

SRR +
| DESIGN |
tremonaen +
|
- + + +
| | | |
R LR L R ST LT + Fmemme—- et +
| BUILDTLA ! | CHECK | | UPDATE | | VAR_OPT2 |
| BUILDDIN | #=c=csecd $o=ocee aa I +
$mmmm———— N |
|
tecac e L I L et DL -
| | | |
Y e 4+ Pocemcccncnd fomsae mond deecscecoaw 4
| CASES | | ACSTGRD2 | | UPBATE | | LINSRCH2 |
drmcanced denvecurrmend Jemccecced fescecccec=d
| !
T i, 5 bPromanen o=
| | | | |
drnmncnmand frannan cnmad Prenncanned femmecnnd preccccaad
| TRAINS2 | | PSI2PLUS | | CSTGRD2 | | ACST2 | | UPDATE |

Pposcuvsnsud Prvsevsemesd Jecacsansasd boencccnd Ppoencanwced

Prosnevesnd

Pmwnvend fpunwvuaswsd

| PSI2 | | CSTGRD2 |

Prosuvosd Ppresvusssaed

E.3.2 User Interface: design.m
% Driver script for constrained asynchronous design algorithm

shotime(clock); % time hack to estimate speed

% LOAD PLANT & INITIAL CONTROLLER MODELS.
ssel=input(’Select system: 1 »> tla, 2 »> dint: *);
if sselewy,
(AB,DS,seqptr, theta, varptr,W,x0,BTP, keyseqlebuildtla;
else,
if sselws2;
(AB,DS,seqptr, theta,varptr,W,x0,BIP, keyaeq]sbuilddin;

M8 At Azt s s e AT AIY AT S LG A 1 7 1IN LU Y P L 2 Y ST IY ML AL) M P VI AT T L MY S N SR I\ N\ LS AT I I A S RA A

E.3. Design Routines 133

else,
fprintf(’\n Unknown system type...abort run. \n’);
end;
end;
% VERIFY DIMENSIONS AND COMPUTE [consts]
consts=check(AB,DS,seqptr,theta,varptr,¥,x0,BTP,kayseq);
consts(18)=.5; % assume system is stable with initial gains

% SELECT & INSTALL INITIAL GAINS (theta)
tsel=input(’Select initial theta; O=>random, 1=>last run, 2=>loaded: ’);
if tsel==0,

consts (15)=2; % assume unstable if rand gains
thetasrand(theta)-.5; % random gains: U(-0.5, 0.5)
end;
if tsel=a=y, % load saved theta vector (assume stable)

if ssel==}, load tlatheta.mat, elsae,

if sselas2, load dintheta.mat, end;end;
end;
[AB, DS] = update(AB,DS,theta,varptr,consts);

% DISPLAY INITIAL GAINS
fprintf(’\nTheta = %2.3g’,theta(l));
for jp=2:consts(s) forintf(’ %0.3f?,theta(jp)); end;
fpxintf(’\n’);

% wasuvssrsss CALL DESIGN PROGRAN, OPTIMIZE (theta] wssessesiwmis

% Select synchronous/asynchronous phasing
consts(i4)=input(’Select method; O=>Asynch, i=>Synch: *);
consts(i)w, ., -

input(’Select initial cost function; Ow>Stable, 1=dUnatabla: ’);
shotime(clock); % time hack to estimate speed

fprintf ('Compiling parameter optimication code:’); ¥ user advisory
(theta,AB,DS]» var_opt2{AB,DS,¥,x0,theta,varptr,seqptr,consts,ssel);

shotime(clock); % time hack to estimate speed

% ond of main program listing $$3$8$$83$$38358888838888388588888885888888

E.3.3 Main Optimization Program: var_opt2.m

function [theta,AB,DS]w...
var opt(AB,DS,v0,x0,theta,varpty, seqpty,consts,ssel);

% main drivexr for coefficient optimization

L g e e o man e o ol osn L e L a e a o

134 Appendix E. Computer Codes

fprintf(® Optimization compile complete.\n’)
fprintf(’\nBegin parameter optimization (var_opt). \n’)

% for single-sequence or synchronous cases: times=[0]
% for the two-sequence asynchronous cases: [times] partitions the
% time offset (phase) into regions of continuous ’Psi’.

nx=consts (1) ; % number of states

nvar=consts(5) ; % number of variable parameters
seqlen=consts(8); % length of longest sequence
fastseq=consts(11); % index to shortest sequence
oldalpha=1e-6; % some guess to initialize step size
grad=ones(1,nvar); % allocate space

srchdir=ones(avar,1); % allocate space

alpha=0; % allocate space

complete=0; % completion flag, +1 if ok, -1 if timeout
loopcount=1; % counter to initialize Hessian
totalcount=1; % total iteration counter

maxcount=50; % max iteration limit (timeout trigger)
tol=.0001; % gradient convergence criteria
mincost=tol; % cost convergence criteria
nomstep=.001; % nominal alpha guess for first search

% PARTITION OF CONTINUOUS PHASE REGIONS
[times] = cases(0,DS,seqptr,consts);

% FIND CONTINUOUS AND DISCRETE VARIABLES IN FASTSEQ

cvarsel=(varptr(:,i)==d); % boolean of cont. vars,

tvarsel=cvarsel; % boolean of all vars

for imi:seqlen, % discrete vars. in fastaeq
tvarsel=tvarsel | (varptr(:,1)es-gegptr(fastaeq,i));

end; ‘ :

blockvcunsun(tvarsel) ,stvarsel-1; % block offset for partials

blockwnxsblock; % coluzmn offset for partials

tvarselstind(tvarsel)’; ¥ all vars. in fastseq

cvarselefiud(cvarsel)’; % continuous vars (in AB)

% swesssee NAIN SEARCH LOOP sésseves
while completess0,
fprintf (' \nStart gradient search number °);
tprint? (int2str(totalcount)); fprinte(’\n’);
lastgradwgrad; CRR,
[cont,grad,atable]s. .. T
acstgrd2{times,u0,x0,AB, DS, seqpty, varptr,consts,block, tvarsel ,cvarsel);
delgradegrad-lastgrad; .
gradnorm=noxm(grad) ;

E.3. Design Routines 135

% COMPUTE SEARCH DIRECTION
% quasi- Newton search using Broyden-Fletcher-Goldfarb-Shanno update.

% update Hessian, "G"

if loopcount==l, % reoset Hessian to I
G=aya(nvar); nsdsi; oldalpha=nomstep; _
else, % if loopcounts=i % compute Hessian update

G=G+lastgrad’+lastgrad/(lastgrad*srchdir)+...
delgrad’*delgrad/(alphasdelgradssrchdir);
end; % if loopcount=si,
if min(real(eig(G)))<=eps, G=eye(nvar); end; % insure G positive def.

% compute search direction & step estimate

cldalpha=oldalpha®nsd;

srchdir=s-G\grad’; % Newtonian search direction
nsd=norm(srchdir) ;

oldalpha=oldalpha/nsd; % initial step size estimate

fprint2('Coat=%6.5g. |lGrad||=%6.5g. ||SrchDir||=¥6.5g\n’,cost,gradnornm,nsd)
% COMPUTE STEP (ALPHA) TO MIN COST

alpha=linsrch2(srchdir,oldalpha,cost,times,v0,x0,AB,DS,theta,...
saqptr, varptr,consts);

if alpha<meps, alpha=0; loopcount=0; end;

oldalphasaiphatie~6; % ensure old step is positive

% UPDATE PARAMETER SET

“hetasthetasalphassrchdir; % update theta
(AB,DS]vupdate(AB,DS, theta,varptr,consts); % update AB and DS

it ((atable~1)e(consts(15)=1))<0, 1oopcount-1. ond;
consts(15)=stable;

fprintf (*\nTheta = %2.3g',theta(1));
for jpw2:nvar fprintf(’ %2.3g’,theta(jp)); ond;
fprintf(’\a’);

¥ SAVE GAINS FOR FUTURE REFEREKCE
if ssol=el,
save tlatheta.mat theta;
else,
it ssel=sl, sive dintheta.mat theta; end;
end;

% TEST FOR CO.:PLETION/TIMEOUT

CYraencgal Y sl Y i
MR AR 2%y PN s

,.
e
"~

-y
4”;—#

lgvt

sﬁ‘- R N M N N N N R X I R RN N S A A R I G assAaacA

136 Appendix E. Computer Codes

i# totalcount>maxcount, complete=-1; end;
if gradnorm<{tol®cost, complete=1; end;
if cost<mincost, complete=1; end; :
% 1f loopcount<3#nvar, loopcount=0; end; % arbitrary Hessian reset
loopcount=loopcount+i; ' :
totalcount=totalcount+l;
end; % while complete”= (main search loop)

return;

% end of function min_var $$$$$$$$$S55S58S85336588938888888888858888388

E.3.4 Asynchronous Cost and Gradient: acstgrd2.m

function [cost,grad,stablels...
acstgrd2{brktimes,w0,x0,AB,DS,seqptr,varptr,consts,block,tvarsel ,cvarsel) ;

% estimate average cost & gradient over phase using polynomial curve fit

xsafe=.99; % end point setback ipsures unique transition
z SR VEPR RPN RBUUSREE RO RS LSRN LBV RV R SR RS R EORRAIB SR
4 s» This version is limited to nawgewi or 2 only. ee
: ORGP A AR EEESLRS SR VR LA RES SRR LR SVBICE R VORGSO E S

p A LY T T T e P T T T T T L T L T S T T T TP TP YT TP L P STy DAY TR 1T

%

. OUTPUTS: cost w phasing-veighted asynchronous cost function (scaler)
grad » gradient of cost WRT thata (column vactor)

% \ atable » flag to select correct cust function s linsrch.m

% INPUTS: | briktimes « sorted wactor of tav’s that partition roglons of
% continuous Pei(tav).
%

%

%

»C

w0,20,AB,DS,seqptr, varpir,consta, (see build & check)

PCERSIBEEHRIEIROURIEICIEIEOEIRE0ENRORIRINRINENIRNEPREENERSPTRIERSER
sesseensressessns STATE TRANSITION NATRIZ PARANETERSesssecssecesesessss -

%
%
% These parameters are defined for any tiwe perded:

¥ Psi = State Transition Natyix for the pericd

% PeiDot = partial of Psi wrt a variable paraneter (theta element)
% ¥ = veighting: x(0)’'W x(0)=\integral_ {period} z(t)'W x(t) dt
% V_dot = partial W wrt a variable parsueter {theta wlement)
3
%
%
3

| b , o’ n S _""
e @ R i i

X = E{x(2)x(2)'} from process noise (x0) during pericd (if x(0)=0)
X.dot = partial of X wrt a variable paraseter (theta element)

Y = E{\lntegzal {period} x(t)’¥0 x(t) dt} if 2(0)«0. (scalar)
Y_dot » partial Y wrt a variable parameter (theta elexzeat)

i
7 I

.- ot a5k
27 ¥ = e)

o T Ne)

o
~ -~
Vol
o -

ey

o
-

et h e A R e K Y S0 D A R R AT ST L el T T R R £ R 3 T e T <l T MR TS AR T R P P el R N P P N SR I T S e

E.3. Design Routines 137

% RECURSIVE ALGORITHM FOR COMPUTING STM PARAMETERS

% Suppose: Psi(tf,t0) = T(n)*T(n-1)* ... *T(2)*T(1), where T(i) is

% the state transition matrix (stm) for the i’th segment of the BRTP.

% Let Q(i),R(i), =nd S(i) represent W,X, and Y, respectively, for T(i).

% Initialize:

% Psi(0)=1, PsiDot(0)=[0,0,...,0,0] These may be considered
% W(0)=0; W_dot(0)=[0,0,...,0,0] correct values for Ti=I,
% X{0)=0; X.dot(0)=[0,0,...,0,0] a null transition with
% Y(0)=0; Y_dot(0)=[0,0,...,0,0] =zero elapsed time.

%

% Recursions:

% Psi(i)=T(i)*Psi(i-1),

% PsiDot (i)=T(i)*PsiDot(i-1)+T_dot_(i)*Psi(i-1),

% W(i)=W(i-1) + Psi(i-1)'*Q(i)*Psi(i~1)

% W_dot(i)sW_dot(i-1) + PsiDot(i-1)’*Q(i)*Psi(i-i)...

% +Pai(i-1)7#Q_dot(i)*Psi(i-1) + Psi(i~1)'*Qi*PsiDot(i~1)
% X(i)=T(1)*X(i-1)*T(i)* + R(i)

% X.dot(1)=T_dot (1) *X(i-1)*T(i)’ + T(i)*X_ dot(i-1)*T(i)’...

% +T(i)»X(i-1)*T_dot(i)? + R_dot(i)

% Y(1)=Y(i-1) + X(i-1).#Q(4)

% Y_dot(i)=Y_dot(i-1) + X_dot(i-1).%Q(i) + X(i-1).*Q.dot(i)

%

% Then, Psi(n), PsiDot(n), W(n), W_dot(n), X(n), X_.dot(n),
% Y(n) and Y.dot(n) apply to the period covered by Psi.
%

% o s o oo o o oo R SR R I Al o ol ol o o s ol o o

% olokiokaokkkiokoroookkkkk. TRAIN DATA sskorsksbnbssedibbbd sk xhbibnin
% :
% Train concept: The fastest sampler has frequent bursts or trains »f
% k or k-1 consecutive short sample periods where: '

% katrunc(2’nd shortest sample period/shortest sample period).

4 Data for these fixed STM's are precalculated and stored in °’trndat’
% to avoid subsequent reduce redundant calculations. °’trndat’
% includes the discrete events on both ends of the fast ’'sampla train.’
v
A The precalculated trndat and cc parameters are defined as:
h
% QQ = fwi; w2l
% RR = CXx1;x2]1]
% S8 = £yl;v2]
4 TT = [Psii ; Psi2]
4
% QQdot = [Wi_dot .t ... Wi dot_nvart ;
X % W2_dot.1 ... ¥z.dot nvart]
3 4 RRdot = [Xt.dot .1 ... i.dot_nvart ;
1) 4 X2 dot.1 ... X2 dot_avart]
. W

>}

€. gncns

EE 2

n D

2 N

_',iej . . . " ! 3 | A
B O R L T s A S RARY

138 Appendix E. Computer Codes

% SSdot = [Yi_dot_1 ... Yi_dot_nvart ;
% Yi_dot.2 ... Y2_dot_nvart]
% T = [Psit_dot_t ... Psii_dot_nvart ;
h Psi2_dot.1 ... Psi2_dot_nvart]

% Where Psii, Wi, X1 and Yi apply to the shorter train (k-i periods),
% and Psi2, W2, X2, and Y2 apply to the longer train (k periods).

% The ’_dot_i’ notation indicates the partial with respect to the i’th
% variable (theta element) in the fast sequence (nvart such variables).
4

%#**#****#*t#t##*##t**#***t*t#*t*t*’ttt*#**#t**t**********#*#*********

nx=consts(1); nxcsconsts(2); nxssconsts (3);
nvar=consts(5); nseg=consts(7); seqlen=consts(8);
keysaq=consts(9); varseq=3-keyseq; fastseq=consts(11);

% note: synch = consts(14), synch==i forces synchronous phasing
% note: stable = consts(15), stable>! selects unstable cost/grad

if (nseq<i)i(nseq>2), errmsg(’nseq out of range, acsrgrd’); return; end;
% PRECOMPUTE DATA FOR FAST SAMPLE TRAIN

(qQQ,RR,SS,TT,GRdot ,RRdot,S3dot, TTdot]=. ..
trains2(w0,x0,AB,DS,seqptr, varptr,consts,block, tvargel cvarsel) ;

stable=0;

synch = congts{14); : % =1 for synch treatuent
ncases=langth(brktimes)~1;

if synche={, ncascys=0; and; - % select synch/asynch
phasing=zeros(2,1); :

if ncases==0, % this is a synchronous problem

% patch here to hard-wire synchronous phase (patch acst2 likewise)
% phasing(1)weps; : o o _
% end of patch

fprintf(’ Syuch Cost & Gradient (one case).\n *);
[Pai, xxt,wwt,yyt,Lan, P, xxtdot ,wutdot, yytdot,LamDot,PDot]w, , .
pai2plus(phasing,AB,DS,saqptr, varper,conate, x0,v0,QQ,RR,88,1T,...
block, tvarsel,QQdot, RRdot,S8dot, TTdot) ;
© stablesmax(abs(Lam));
" [cost,gradlucstgrd2(uvt,xxv,yyt,Pai, consts,Lan, P, vetdot, xxtdet, ...
yytdot ,Laubot ,PDot) ;
-return; '
else, % if ncasesws0
if nseq =2, erzusg(’'EXECUTION ERROR, nseq~=2 in acsrgrd’); end;
end;

E.3. Design Routines 139

fprintf(® Asynch Cost/Grad: %2.0f’,ncases);
fprintf£(’ continuous phase regions. \n’);

% compute percentages for each interval
tweights=brktimes(2: (ncases+1))-brktimes(1:ncases);
tweights=tweights/(brktimes(ncases+1)-brktimes(1));

cost=0; gradszeros(1,nvar);
t=zeros{3,1); y=zeros(3,1); g=zeros(3,nvar);
xa=1/xsafe; xcsxakxasxa/3;

% COMPUTE \INTEGRAL_{PHASING} COST, AND GRADIENT FOR REGIONS
for i=1:ncases,
ts=brktimes(i); tesbrktimes(i+i); span=(te-ts)/2;
t(2)=(ts+te)/2; t(1)=t(2)-xsafe¥span; t(3)=t(2)+xsafe*span;

for j=1:3; % get costs/grads for 3-point fit
phasing(varsaeq)=t(j);
(Psi,xxt,wwt,yyt,Lam,P,xxtdot,wwtdot,yytdot,LamDot,PDot]=, ..

psi2plus(phasing, AB,DS,seqptr,varptr,consts,x0,w0,Q3Q,RR,SS,IT, ...
block, tvarsal,QQdot,RRdot,SSdot,TTdot) ;
stablesmax([abs(Lam); stable]);
Cy(j).g(j.:))=cstgrd2(wwt,xxt,yyt,Psi,consts,Lam,P,uutdot,xxtdot,. ..
yytdot, LamDot,PDot);
end; ¥ for jei:3

% approximate curve as: y = ¢ x*2 + b x + a, x \in (~1.01,1.01).
% vhere amy(2); bu(y(3)-y(1))/2; cw(y(3)-20y(2)+y(1))/2.
% Then \integral y(\tau) d\tau = c(2x"3)/3 + a(2x) with xs1/xsafe.

a=y(2);

adotwg(2,:);
cu(y(3)~20y(2)+y(1))/2;
cdotw(g(3,:)-2eg(2,:)+g(1,:))/2;

% include current phase region in composite cost/grad
delcostwtweights (i)e(cexceasxa);
costwcont+delcost;
gradwgradetuaights (1)« (cdotexceadotexa);

fprintf(’ Region ’); fprintf(int2str(i));

fprinte(? (tauwl6.5£-%6.52).',tn,te)

fprintf(’ DelCoste)6.5¢. Costw}6.5f.\n’,delcoat,cost)
end; ¥ for isi:ncases

return

% end of function acstgrd2 $$$$3338888883338558888588859885888888588383

B PR D e G ¥ A b ok B ik G of B el o AR A B or B anid d e A el A Ak A R o o dh ok Rl B Ak A 8 A bk € At chh il d h ok ¢ hd e AR e AR m R bR A B ek Bk d ARk Bk GE e e A B A AR AL A Ak Bh A R b A hd B k. As AR bl A in ARAe B B A A

140 Appendix E. Computer Codes .

E.3.5 Asynchronous Cost Only: acst2.m
function cost=acst2(brktimes,w0,x0,AB,DS,seqptr,consts);

% estimate cost averaged over phase using polynomial curve fit
% see function acstgrd2 forx detailed comments

% For validation testing of trndat & cc, declare as:
% function [QQ,RR,SS,TT]strnstst2(w0,x0,AB,DS,seqptr,consts);
% and delete indicated portion at end.

% T P

% ** This version is limited to nseq=1 or 2 only. **

% T P e
nx=consts(1); nxcsconsts(2); nxs=consts(3);
nseq=consts(7); seqlen=consts(8); keyseq=consts(9);
fastseq=consts(11); ABwide=nxc+nxs;

cycles=round(consts(12) /consta(13)); % trainlen/speriod

if (nseq<i)|(nseq>2), errmsg(’nseq out of range, acsrgrd’); return; end;

4 fixed indices for array operations
cols=1:nx; cols2=cols+nx; offcols=cols-nx;
phirowva=i:nxc; phi2rowssphirouva+nxc;
phicola=i:ABuide; phi2cols=phicola+ABwide;
% COMPUTE PARAMETERS FOR ONE CYCLE OF FASTSEQ.
% Put first ovent in train data
isp=-seqptr(fastseg,i); % initial event number
blkisispenx+offcols;
rowseliwgind(any(DS(:,blk1) ' -eye(nx))); % non-identity rows
Qwzerxoa(nx); '
Rezeros(nx) ;
Sw0;
TeDS(:,blk1);
] Include rest of first cycle in train data
for j=2:seqlen;
ispw-seqptr(fastseq,j); % event identifier
it isp>0, % isp points to DS block
% DISCRETE EVENT
blkeispenx+oftcols; % index to DS
rowselstind (any(DS(:,blk) '~eye(nx))); % non-identity rows
staw=DS{rousel,blk); % nev sta
R(rovsel,:)=atmeR; % XegtmeX

T(rousel,:)ustusT; Y PalwstmePsi

Eig:i:s E.3. Design Routines : 141
i
' {;;;piq\ R(:,rowsal)sR*stm’; % X=[stm*X]*stm’+process noise
:,:1:,' R(rowsel,rowsel)=R(rowsel,rowsel)+x0(rowsel,rovsel);
{Qq else, % isp must be < 0 % continuous time only
. Il % CONTINUQUS TIME TRANSITION
kggf ti=-isp; ABti=AB*ti; Ati=ABt1(phirows,phirows);
) tempwq=[-ABt1’,w0(phicols,phicols)*ti;zeros(ABwide), ABti];
A0 tempxr~=[-At1,x0(phirows,phirows)*t1;zeros(nxc), Ati’];
??p: tempwq=expm(tempwq) ; '
el tempxr=expm(tempxr) ;
o phix=tempwq(phi2cols,phi2cols); % phi extended
A phi=phix(phirows,:); % phi=[Phi(t1),Gamma(t1)];
(' Qti=uOsti; % Qti=\integral {0}"{t1} B’exp(A’t) wO exp(At) B dt
e Qti(phicols,phicols)=phix’*tempwq(phicols,phi2cols);
"Qﬁa % Rtis\integral {0}“{t1} exp(At) xO exp(A’t) dt
Jgkﬁ Rti=phi(:,phirovs)*tempxr(phirows,phi2rovs);
:q“\ S=S+sum(sum(R.*Qt1)); % delta cost correct
oo qtempeT’#Qt1; % Psi’#Q
e R(phirows, :)=phi*R(phicols,:); % X=atmeX
i Q=Q+qtempsT; % WaWeatm’*Qestn
wdﬂ T(phirows, :)=phisT(phicols,:); % PsimatmePsi
}kﬁ R(:,phirows)=R(:,phicola)#phi’; % X=[atmeX]sstm’
.qu R(phirows,phirows)=R(phirovs,phirous)+Rtl; ¥ Xs[stmeX¢stm’]+R
o end; % if isp>0 ... olse ...
{ end; % for j=2:seqlen % no more discretes in speriod
{
R % EXTEND TO ’CYCLES’ & ’CYCLES¢1’ PERIODS AND ADD FINAL DISCRETE EVENT
.
%!';1 W=Q;
ccaS; :
1§§f sto=DS(rovsell,blkl); % sta for final event
B
-Eﬁi loopcount={cycles,2]; ¥ set number of loop iterations
Eﬁ} for casewi:?2; % 1: first cycles periods; 2: last period
IhY for i=2:loopcount(case),
(1 ceeccesun{sun(X,.¢Q))+S;
§55 qtempwPsi’'eQ;
ﬁ“l‘ x'T‘x;
55? Wel+qtompePsi;
hM PaisTePsi;
Hay X=XeT'+R;
!! end;
’i-' basew(case-1)enx; colselsbasetcols; rovselsbasesrouseli;
N QQ(colmel, :)ml;
4 by SS(case)=cc;

RR(colsel,:)s=X;
RR(rowsel, :)=stmeX;
TT(colsel,:)mPoi; TT(rousel, :)wstmePei;

142 Appendix E. Computer Codes

RR{colsel,rowseli)=RR(colsel,:)*stm’;
RR(rowsel,rowseli)sRR(rowsel,rowsell)+x0(rowsell,rowsell);
end; ¥ for case=1:2

AR T TR T T P S R S R PR L IS IR EE S E E A PR A R

% DELETE EVERYTHING FROM HERE DOWN TO CREATE TRNTST.M
ARSI SR S g Dl st s I n IS L R PRt SRt DR s It e

synch = consts(14); % =1 for synch
ncases=length(brktimes)~1;

if synch==i, ncases=0; end; : % select synchronous
phasing=zeros(2,1);

i? ncases==0, % this is a synchronous problem

% patch here to hard-wire synchronous phase (patch acstgrd2 likewise)
% phasing(1i)=eps;
% end of patch

(Psi,xxt,wwt,yytl=, ..
psi2(phasing,AB,DS,8eqptr,consts,x0,v0,Qq,RR,SS,TT);
costecatgrd2(wwt,xxt,yyt,Psi,consts);
return;
else, ¥ if ncaseses=0
if nseq"=2, errmsg(’EXECUTION ERROR, nseq“s2 in acargrd’'); end;
end;

yszeros(3,1);

varseqe3-keyseq;

% compute percentages for each interval

tveightswbrktimes(2: (ncases+1))-brktimes(l:ncases);
tveightawtveights/(brktimes(ncases+1)-brktimes(1));

costs0; twzeros(d,1); y=zeros(3,1);

xsafew.99; % back-off from ends to ensure unambiguous transition
xa=1/xsafe; xcexasxasxa/3;

% coumpute \integral_ {phasing} cost, and gradient for regions
for imi:ncases, '

tswbrktimes(i); tewbrktimes(i+l); span=(te-ts)/2;
t(Du(terte)/2; t(1)ut(2)~xsatesspan; t(3)=t(2)<xuateespan;

for j=1:3; % got costs/grads for 3-point it
phasing(varseq)et(j);
[Psi,xxt,wut,yytls.,.
psi2(phasing,AB,DS,seqptr,consts ,x0,%0,0Q,RR,SS,TT);
y(j)=cstgrd2(wut,xxt,yyt,Psi,consts);
end; ¥ for jwi:3

Don b ¢ Ak 4 03 0 Ry k05 W -

AR A RAR RS RRASAS S B ¥ L LR LA U R AR MARC SR A A A N AL AL L 0L ML W VL AT RN AT MAT Y A

E.3. Design Routines 143

% approximate curve as: y = ¢ x*2 + b x + a, x \in (-1.01,1.01).
% where a=y(2); b=(y(3)-y(1))/2; e=(y(3)-2+y(2)+y(1))/2.
% Then \integral y(\tau) d\tau = c(2x°3)/3 + a(2x) with x=1/xsafe.

a=y(2);
c=(y(3)-2+y(2)+y(1))/2;

% include data from current phase region in composite cost/grad
cogtacost+tweights (i) »{c*xctarxa);

oend; % for i=i:
return

% end of function acst2 $$$$$SSSESSEESEIESESESISS88858383888888

E.3.6 Cost and Gradient Definition: cstgrd2.m

function [cost,gradient]s...
cstgrd2(wvt,xxt,yyt,Psi,consts,Lam,P,uwtdot,xxtdot, yytdot,LamDot,PDot) ;

Y This function computes the cost or cost plus gradient for the
% BTP state transition matrix Psi (i.e. at one phase condition).
1 For cost alone, the last four input arguments are optional.

¥ INPUTS: wut = state error veighting matriz (positive semi definite)
xxt = expected disturbance covariance (process noise)

yyt = cost corraction for noise in current BTP

vvtdot » partials of state error weighting matrix

xxtdot = partials of expacted disturbance covariance
yytdot = partials of cost correction wrt theta

theta = row vector of the undetermined coefficients.
consts » row of system constants

Lam = column vector of the eigenvalues of Psi.

P = eigenvector matrix of BIP state transition matrix
LazDot » the nx by nvar Jacobian (d Lam/d theta).

PDot = row of (d P/d theta(i)) blocks

One of two cost functions are selected by consts(15).

If consts(16)>1,
cost=sun(abs(eig((Psi)))."8), 4’'th order version commsnted out

It consts(15)<1,
cost = xxt.s(P’\[1./(1-conj(Lun)sLan.’)~1).¢(P'ewuteP)]e/P)

I 3C 2L T L L BT T LT L FT L I FLCIEFLEJE XL

e a
el %

A

144 Appendix E. Computer Codes

%
% This is the weighted (by wwt) value of the expected
% noise power for specified process noise (xxt).
%
nx=consts(1); % total number of states
nvarsconsts(§) ; % number of variable parameters
stable=consts (15);
BTPaconsts (10) ;
it nargin«<7, % supply any missing arguments
(P,Lam]=eig(Psi);
Lam=diag(Lam);

for i=i:nx, P(:,i)sP(:,i)/norm(P(:,i)); end;
end; % if nargin<s,

it stabled>=i; % use unstable cost function
omega=conj(Lam) .%Lan;
tempomega.”3; % eighth order cost
% tempmomega; % fourth order cost
cost=omega’*temp;
if nargout>1, % compute gradient too
omegastemp;
gradient=8+real ((omega.*Lam) ' #Lambot) ;
end; -
olse, ¥ if stabledsi .., else ... % use stable cost function
ALameaba (Lam);
if? max(ALam)>1i-eps, % i2 actually unstable
costei/aps; % near infinite cost
elsa, % if max(Alam)... else ... % i.e. if stable
omega® (1) ./(1-conj(Lam)eLan.?);
vpeuuteP;
pupeP’ evp;
tompronega. spup;
invpeinv(P);

tompinzeal (invp’ stempeinvp);
costesum(sun(xxt.stenpl))+yyt;
contwcost/BIP;
if nargoutst, % compute gradient too
OHEZASGEOmega . OO}
cols=i-nx:0;
for isi:nvar, % for each variable
inxeienx;
pupdotsPDot(:,inx+cols) ' swp; % interrim result
pvpdotspupdotspupdot’+P’ syutdot(:,inxecols)eP;
omegdoteconj (Lam)eLanDot(:,1).*; % interria result
omoegdot=(omagdoteomegdot’).somegasq;
tampdot=omsga. *pupdot+onsgdot. spwp;

>
o

E.3. Design Routines 145

temp3=(tompdot-2+temp*invp*PDot(:,inx+cols)); % interrim result
temp2=xxt.*real (invp’*temp3*invp)+xxtdot(:,inx+cols).#templ;
gradient (i)=sum(sum(temp2))+yytdot(i);
end; % for isi:nvar
gradientsreal(gradient)/BTP;
oend; ¥% if nargout>1
end; % if max(AbsLam)>i-eps ... else ...
end; % if stable
cost=real{cost);
return;

% end of function catgrd2 $$$$$$3$3$$$585S5S5588885535885888588888$

E.3.7 STM and Partials: psi2plus.m

function [Psi,XX,WW,YY,Lam,P,PXX,PNW,PYY,PLam,PP]=. ..
psi2plus(t2gc,AB,DS,sptr, vptr,con,x0,v0,qq,rr,88,tt,block, tvar,pqq, prr, pss, pt

% “"psi2plus" computes BTP STM, related matrices, and gradients.
% See extensive comments at end of code.

fprintf(® psil2plus: ’);

% UNPACK CONSTANTS

nxwcon(1); nxcecon(2) ; nxa=con(3) ;
nvaracon(5); nvaxrcacon(6) ; asequcon(?);
seqlenwcon(8); BTPucon(10); fastsequcon(1l);
trainlenvcon(12); spariods=con(13); ABwidewnxcenxs;

) CREATE INDICES FOR ARRAY OPERATIONS

colseiinx; offcols=cole~nx; varinds=i:nvar;
phirovawi:nxc; x2colssphirovs+nxc; x3colawx2colsenxc;
phicols=1:ABvide; v2colswphicols+ABuide; w3colssw2cols<ABuide;

offpcolswphicols~-nx; offprowssphirows-nx;
SET INDICES FOR PARTIALS CALCULATIONS
12 nargout>8, nvartelength(tvar); cvarselsgind((vptr(:,1)==0)’});
else, varindxe(];tvar={];nvart«0;cvarsel=[];nvarce0; vptr(l,:)=-1; end;
% VERIFY t2go IN RANGE
if length(t2go) "wnseq, sxrrusg(’Extra/missing phase times.’); end;
it (any(t2go<0)), ermmsg(’Negative time to go in psl plus.’); eud;

Y-wwmmevessmeneawsGet Pointers for Initial Discrete Events--c-s-wssnew.
% t2go(4) will be the time from BIP start to the first discrete
% svent for each sequence. ‘sptr(i,spindx(i))’ defines the event.
donev1; spindx=ones(t2go)eseqlen; laststepszeros(t2go);
while donex0; % completion flag
for iwi:nseq,laststep(i)=sptr(i,spindz(1));end; ¥ index to last event
laststepslaststep.s(laststep>0); ¥ mask discrete events

VSNRGH

146 Appendix E. Computer Codes

backstep=(laststep<t2go) ; % boolean
done=sum(backstep) ; % 0 if done
t2go=t2go-backstaep.slaststep; % adjust t2go
t2go=t2go.*(t2go>0); % eliminate any negative times
spindxsspindx-backstep; % adjust index
spindxsspindx*seqlent(spindx(l), % fix possible wrap-around
end; % while done>0
spindx=spindx+i; % set to current event

spindx=spindx-(spindx>seqlen)#seqlen; ¥ f£ix wrap-around

------------ Compute Psi, PsiDot, XX, PXX, WW, PWW, YY, PYY--c-mcecmcneo-
Pai = psi, the state transition matrix for the specified t2go.
PsiDot = [d Psi/d theta-1, ... , d Psi/d theta-nvar] {nxn block row}
XX = E xx’ at BTP end from process noise during BTP
PXX = partials XX wrt theta {row of nxn blocks}
WW = matrix s.t. xO’+WiWex0 is the cost for x0 error at BIP start
PWW = partials WW wrt theta {rov of nxn blocks}
YY = cost from process noise during BPT
PYY = partials YY wrt theta {row of scalers}
All used as accumulators for intermediate results during recursions.

ILIEPEFESEIEFE L FET

4 DECLARE VARIABLES S0 STUFF TO BE CLEARED WILL BE AT END
Psimeye(nx); PsiDot=zeros (nx,nvarsnx);

XX=zeros(nx); PXX=zeros (nx,nvarenx) ;

YY=O0; PYYszeros(nvar,i);

Wiw=zeros (nx) ; PWiszeros(nx,nvarsnx);

i=0; j=0; inx=0; jnx=0;ir«0;iron0;icu0;icon0;ispnx=0;
t2=0;0ffsete0;dtud;stuzeros(t2go) ;eselnl;

4 IKITIALIZE FOR FIRST EVENT

donewi; elaptine=0; % time into BTP
2orotol=BTPesps;

[e1,i1)=min(v2go); % time to first event
iape-gptr(il,spindx(il)); ¥ identify first stm

4 QUICKIE INITIAL DISCRETE EVENT IF PRACTICAL

it isp>0, { tirst event discrete

blkselwinpenzeoticols;
PaisDS(:,blksel);
varselsfind((vptr(:,1)w=isp)’);
for ievarsel, PaiDot(vptr(i,2),(i-1)encevptr(i,3))=i; end;
spindx(i1)wspindx(i1)+1;
tprintf('D’); tprintf (int2atr(isp));
end; % if isp>0

] MAIN STATE TRANSITION MATRIX (stm) CALCULATION LOOP

while dones0, ¥ main loop for Psi calcs
if (elaptimestiezerotol)>=BIP, ti=BTP-elaptime;donen0; end; % last step
spindxespindzi-(spindz>seqlen)eseqlen; % 2ix possidle wrap-around

e e ek 2 A 2 e s Bk m ki dea -

o - - & e T S

E.3. Design Routines 147

if ti1<=0, % ti=0 => do next event now
st=sort(t2go); % find next event time too
t2=8t(2); % time to second event
it (ii==fastseq)&(t2>=trainlen)&(spindx(il)==1)g...
((trainlen+elaptime)<BTP), % next event is a train
% TRAIN EVENT
rovgelscols; ssel=1; dt=trainlen; % use short train indices

it (t2>=(dt+speriod))&((dt+elaptime+speriod)<BTP), % k cycles
rowselsrowsel+nx; ssel=2; dt=dt+speriod;% use long train indices

end;

stmstt(rowsel,:);

YY=YY+sum(sum(XX.%qq(rowsel,:)))+ss(ssel);

qtempsPsi’*qq(rowsel,:);

for isvarindx, blksel=isnx+offcols; % for all variables
qqdot=qtemp*PsiDot(:,blksel);
PWW(:,blksel)=PWW(:,blksel)+qqdot+qqdot’;
PYY(1)=PYY(i)+sum(sum{PXX(:,blksel) .*qq(rousael,:)));
PXX(:,blksel)=PXX(:,blksel)*stm’;

end; % for isvarindx

PsiDot=atm*PaiDot;

PXX=gtmePXX;

0ldX=XX;

XX=gtmeXX;

for i=i:nvart, % for vars in train
Jetvar(i); blkeelajsnxeoffcols; trnblksienxsoffcols;
PWW(:,blkael)=PWW(:,blksel) +Pui’ ¢pqq(rousel , tynblk)sPei;
PYY(j)=PYY(j)+sum(sum(01dX.*pqq(rovsel,trablk)))+pss(ssel,i);
PaiDot(:,blksel)=PaiDot(:,blkael)+ptt(rovael,trnblk)¢Psi ;
rrdotsXXsptt(rovsel,txnblk)’;
PXX(:,blksel)=PXX(:,blksel)+rrdot+rrdot’ +prr(rovsel,trnblk);

end; % for ietvar

WislWeqtanpsPsi ;

PaimataePai;

XXsXXegtm'orr({rovsel,:);

tprint2('T*); fprintf(int2str(ssel));

g 2
e R

v xR

i

‘ t2gont2go-de;
_ %f elaptimswelaptimeedt;
ai t2go(il)wey;
A else, - % next event NOT A TRAIN EVEN
Q;i isp=-sptr(il,spindx(il)); % event identifier :
') it iap>0, % iap points to DS block
@ ¥ DISCRETE EVENT

blkselwispsnx+¢cifcols;
rousel=2ind (any(DS(: ,blkuel) ’~eye(nx)));

4 if length(roweel)<i, rowssl=i; end; % guard for rovsel=eye
:§?§ stawDS(rousel,blksel);
A PaiDot(rousel, :)=stusPsiDot;

By

PXX(rousel,:)wstnePXX;

e

YJ’YI‘- 153 3 T arer
B A A DA A MU L

s

tith, ¥
] (‘

R

148

Appendix E. Computer Codes

for i=varindx; % for all variables
inx=(i-1)#*nx; blksel=inx+cols; colsel=inx+rowsel;
PXX(:,colsel)=PXX(:,blksel)*stm’;

end; % for isvarindx

XX(rowsel, :)=stm*XX;

varsel=find((vptr(:,1)==isp)’);

for imvarsel, inx=(i~1)*nx; % variables in DS block
blksel=inx+cols; iravptr(i,2); ic=vptr(i,3); iro=inx+ir;
PaiDot(ir,blksel)=PsiDot(ir,blksel)+Psi(ic,:);
PXX(:,iro)=PXX(:,iro)+XX(:,ic);
PXX(ir,blksel)=PXX(ir,blksel) +XX(:,ic)’;

end; % for i=varsel

Psi(rowsel,:)=atm#Psi;

XX(:,rowsal)aXX*stm’;

XX(rowsel,rouvsel)=XX(rowsel ,rowsel)+x0(rouael,rowsel);

fprintf(’D’); fprintf (int2str(isp));

elge, ¥ isp must be < 0 % i.e. continuous segment
t2go(i1)=t2go(il)~isp; % increase that t2go element
fprintf(*/*);
end; %it isp>0 ... else ...
and; % if (il==fastseq ... else ..

spindx(i1)=spindx(i1)+1; % increment sequence index

olse, ¥ if (ti<m 0) i.e. £150 = tine passes, continuous segment

CONTINUOUS TINE TRANSITIONS
ABti=ABetl;
At1=ABt1(phirovs,phirows);
tempuqe [~ABt1’,w0(phicols,phicols) sti;zexoa (ABuide), ABt1);
tempxr=[-At},x0(phirous,phirous)eti;zeros{nxc), Atl1’]);
if nargout>6 & length(cvarsel)>0,
ABdotwzeron(ABwide); iwcvarsel(1); ABdot(vptr(i,2),vptr(i,3))=ti;
tompuqe [tenpuq, [zexos (ABuide) ; ABdot) ; zeros (ABuide,2eABvide) ,ABti];
tempxr=[tenpxr, [zeros (nxc) ; ABdot (phirows ,phirous)];...
zeros (nxc,2enxc) ,Atl];
end; ¥ if nargout’>6 & length(cvarsel)>0
tampuguoxpim(tenpuq) ;
temprrwexpa(tenpxr);
phixetenpuq(w2cols,u2cols);
phisphix(phirovs,:);
Qti=u(ety;
Qti(phicols,phicole)=phix’stampuq{phicols,u2cols);
qenp=Psi’eQty;
YY=YYesur(sum(XX.*Q21));
Rtisphi(:,phirows)eteapxr(phizrous,12cols);
inx=0;
for isvarindx;
blkasel=inx¢cols;
inxsinx+nx;

S e o
YEte Ny oy

. ca
o s

T

A

1

E 2
v

e S
CALI AT @

-

LAz Al]

Copd

; @ 2 AN

et}

i
)
L b

"

o

J

E.3. Design Routines 149

qqdot=qtemp*PsiDot(:,blksel);
PWW(:,blksel)sPWW(:,blksel)+qqdot+qqdot’;
PYY(i)=PYY(i)+sum(sum(PXX(:,blksel).*Qti));
PXX(:,inx+offprows)sPXX(:,inx+offpcols)*phi’;
end; ¥ for iavarindx
XX(phirows, :)=phi*XX(phicols,:);
PsiDot(phiroas, :)=phi*PsiDot(phicols,:);
PXX(phirows, :)=phi*PXX(phicols,:);
for j=1:length(cvarsel), % cont. vars. (not tested)
jj=cvarsel(j);
inx=block(jj);
blksel=inx+cols;
blkrou=inx+phirows;
blkcol=inx+phicols;
phidot=tempuq(phirows,w3cols);
PaiDot(phirows,blksel)=PsiDot(phirovs,blksel)+phidotsPai(phicols,:);
rrdot=phi(:,phirows)’stempxr(phirovs,x3cols);
rrdotarrdot+rrdot’;
PXX(phirows,blkrow)=PXX(phirows,blkrow)+rrdot;
rrdoteXX(:,phicols)e¢phidot’;
PXX(: ,blkrow)=PXX(:,blkrov)+rrdot;
PXX(phixowe,blksel)=PXX(phirous,blksel)+rrdot’;
qqdot=phix’*tempuq(phicols,v3cols);
qqdoteqqdoteqgdot’;
PUW(phicols,blkcol)=Pul(phicols,blkcol) +qqdot;
i? j~length(cvarsel);
ABdotezexos(ABwide); imcvarsel(jel);
ABdot (vptz(i,2),vptx(4,3))=ty;
tompwq (v2cole,uicols) wABdot;
tempxr(x2¢ols, x3cola)wABdot(phirous,phirous) ;
tenpuorexpa(tempuq) ;
texprreexpm(tonpar);
end; % if j<lemgth(cvarsel)
ond;) for iel:pvar
WieileqtonpePsl;
Pui(phiroua, .)=phisPsi{phicols,:};
XX(: ,pairova)®iX{: .phicols)ephi’;
XX(phiroun,phirous)=iX(phirous,phirouvs)+iity;
elaptimemalaptineset;

tigont2go-tl;
tprint£('C.*);

ond; % if t1 <=0 ... olse ...

{t1,i1)=min(t2go); % next event & its Bequence
end; % vhile elaptimesti<BIP % 1o woxe discretes in BIP
% Clear large teumporary arrays
clear 9g; clear rr; clear ss; clear tt;
clear pqq, clear prr; clear pss; cleas ptt;

TN

-y 150 \ _ Appendix E. Computer Codes

. ‘i"
- \
(

\

‘A clear phi; clear phidot; clear 01dX
H% clear tempwyq; clear tempxr; clear st;
;bi clear phi; - clear phidot; clear stm; clear phix;
3& clear ABti; - clear Ati; clear Rti; clear Qti;
"y clear rrdot; clear qtemp; clear qqdot;
‘ clear blksel; clear rowsal; clear tranblk; clear varsel;
‘!‘.
: kﬂ if nargout<5; return; end;
' @é YesssrssnnousunsssssssEnd of Psi & PsiDot Calculationessssusesssunssin
- Ay
Ky 4 Eigen Calculations---
. {9, [P,Lam}=eig(Pai);
'gha Lam=diag(Lam); % convert to vector
My tor i=i:nx, P(:,1)=P(:,i)/norm(P(:,i)); end; % normalize eigenvectors
:4; fprintf(’, Eigs, Partials: *);
O if nargout<?, return, end;
;;:"% Ymommmmm et e e Jacobian Calculationg=--~--- m—vomaam— e -—-
S PLam=zeros(nx,avar); % allocate space for arrays

PP=zeros {ax,nxenvar)} ;

tempOs=zercs(nx,nxenvar) ;

altcol=0:nx: (nxenvar~-1); % column offesets for nx by nxenvar arrays
L=0; cueg=0; ¥ initialize before first pasa

% precompute all PsiDoteP(:,i) vectors
colsel=cols;
for isvarindx, temp0(:,colsel)wPsilot(:,colsel)sP; colsel=colaelsnx; end;

for iwcols, ¥ inlex to eigenvalue/vector

it (i51)&e(omag =0)0(con] (Lam(i))nul,), % short cut for conjugates

- PLam(i, :)wcong {PLan(i-1,:)); ' ' :
PP(:,altcoled)wconj(PP(: ,altcolei~1));

else, ¥ if (i>1)&(couj(lan(i))=lL) % normal path
colesel=i+altcol;
pP(:,i);
LeLam(i);
ozeg=imag(L);

% precompute tempi=pinv(Leeys+(eye-pep’)ePai)
tenpisleaye(nx)-Psi+pe(p’*Pui); '

1@ e

{U,5,V)=svd{tenpl);
RS S=diag(s);
f%ﬁ tolsnxeS{i)eeps;
X irssun(5>tol);
; rsel=1:ir;

S=diag(ones(ir,1)./5(rsel));
teaplsV{:,rsel)eSeU(:,rsel)’;

) ¥ oSl

NR AN W N W) "~| 'l R . \‘Ll L3R L l“ A .h%.s“‘“l.h [\ t A‘!] 'x‘h ‘ .‘ ! » th!:t‘ : . R ’\‘ 7‘*‘

E.3. Design Routines 151

% precompute templ=pinv(Leye+(eve-pp’)*Psi)#* (I-p*p’)
tempi=tempi-(tempi*p)*p’;

% compute p_dot_ortho and store in PP
PP(:,colsel)=templ*temp0(:,colsel);

% compute lamdot = p’*PsiDot*p + p’*Psisp_dot_ortho
PLam(i,:)=p’*(tempO(:,colsel)+Psi*PP(:,colsel));

if omeg~=0, % add correction to p_dot_ortho for complex EV’'s
sig=real(L);

temp2=Psi*imag(p)-sig*imag(p)+omeg*real(p); % RHS of eqn 9
[maxcompr,maxindx]=max{abs(temp2));
maxcompr=temp2(maxindx) ; % biggest component

maxcomplsreal (tempO(maxindx,colsel));

maxcompl=maxcompl - real(PLam(i,:))*real(p(maxindx)); % same
maxcompl=maxcompl + imag(PLam(i,:))*imag(p(maxindx)); % component
maxcompl=maxcompl+Psi(maxindx,:)*real (PP(:,colsel)); ¥ for nvar

maxcompl=maxcompl - sig*real (PP(maxindx,colsel)); % LHS eqms

maxcompl=maxcompl -omeg*imag(PP(maxindx,colsel));

gamma=sqrt (~1)* (maxcompl/maxcompr) ; % coefficient
PP(:,colsel)=PP(:,colsal)+p*gamma; % true P_Dot vectors

end; % if omeg“=0 ... else ...
end; % if (i>1)&(conj(Lam(i))==Lam(i-1))
tprintf(int2str(i)); % something to watch
end; % for isi:nx

fprintf(’> DONE.’);

fprintf(’ SR= Yg’,max(abs(Lam)));
fprintf(’\n?’);

return;

% end of function psi_plus $$$$$$$$$$$$888588558558588585988883888885888

AT RSt T T T TR T T P R P P L R P

%

% OUTPUT: Psi = BTP state transition matrix

% XX = E(xx’) at BTP start

% WW = BTP veighting matrix at BTP start

% YY = cost correction for noise in current BTP

% Lam = column vector of Psi’s eigenvalues

% P = matrix of Psi’s unit eigenvectors

h PXX = partials XX (block row) wrt theta

% PWW = partiala WW (block row) wrt theta

A PYY = partials YY wrt theta

h Plam = Jacobian martix (d Lam / d theta) (nx by nvar}
% PP, row of (d P / d theta) block matricies (nx by nvarenx)

% INPUT: +t2go = times from BTP start to start of cach sequence (>0).

n'
B da B AR TR PN T A TR 7T R AR A WA U AT RN M SR i M TR E MR SR TR B Y LAY SIUNEAPE TR R Y A VAR A R N AR L AL L N e LA LA R A | ARt R

t"ﬁ ’
1:}:} 152 Appendix E. Computer Codes
g
%@; % AB.DS,vptr,and sptr: (see ’build.m’ and ’update.m’)
f?? % con: (see ’check.m’)
“Qﬂu % x) = process noise covariance
‘. %ﬁ ; v0 = static ueig?ting matr%x
gy A qq = Wi ; W2
f% % rr = [x1;x2]
ol % 88 a [Yl; y2]
. bh % tt = [Psil ; Psi2]
' % pPaq a [Wi_dot .t ... Wi_dot_nvart ;
% W2_dot_1 ... W2_dot_nvart]
% prr a [X1 dot_1 ... X1_dot_nvart ;
A X2_dot_1 ... X2_dot_nvart]
% pss = [Yi_dot_.1 ... Yi_dot_nvart ;
Y% Yi_dot.2 ... Y2_dot_nvart]
% ptt = [Psii_dot.1 ... Psii_dot_nvart ;
% Psi2_dot_.1 ... Psi2_dot_nvart]
%

% Where Psii, Wi, X1 and Y1 apply to the shorter train (k-1 periods),
% and Psi2, W2, X2, and Y2 apply to the longer train (k periods).

% The ’_dot_i’ notation indicates the partial with respect to the i’th
% wvariable (theta element) in the fast sequence (nvart such variables).

frwdskwnshnnneuskeie STATE TRANSITION MATRIX PARAMETERS#swssussnbksbisris
4

% These pararoters are defined for any time period:

% Psi = State Transition Matrix for the pexiod

PaiDot = partial of Psi wrt a variable parameter (theta element)
W = weighting: x(0)'W x(0) = \integral_ {period} x(t)’W0 x(t) dt
W_dot = partial of W wrt a variable parameter (theta element)

X = E{x(2)x(£)’} from process noise (x0) during period (if x(0)=0)
X_dot = partial of X wrt a variable paramster (thota element)

Y = E{\integral_{period} x{t)'W0 x(t) d¢} if x(0)=0. (scaler)
Y.dot = partial Y wrt a variable parameter {theta element)

RECURSIVE ALGORITRM FOR COMPUTING STM PARAMETERS

Suppuse: Pai(tf,t0) = T(n)ef(n-4)e ... *T(2)*T(1), where T(i) i»

the state transition matrix {stx) for the i’'th segment of the pericd.
Let G(i),R{i), and 8{i) represent W,X, and ¥, respuctively, for T(i).

Initialize:
Pai(0)=I, PeiDot(0)={0,0,...,0,0] These may be considered
¥(0)=0; - W.dot(0)={0,0,...,0,0] correct values for TisI,
X{0)=0; X.dot(0)»(0,0,...,0,0] a null transition with
¥(0)=0; Y_dot(0)=(0,0,...,0,0] zero elapsed time.
Recuraions:

Pai(1)=T(1)ePsi(i-1),
FaiDot (1)=T(i)#Pailot(i«1)+T dot_(1)ePsi{i-1),

L IE PE BT PR TE P IE PE PE PE PE PE I PE PE D I IE I S pL

FUA S SR AR S A P AR A8 A AN AN AR AN

E.3. Design Routines

Y% W(i)=Ww(i-1) + Psi(i-1)’*Q(i)»Psi(i-1)

% W_dot(i)=W_dot(i-1) + PsiDot(i-1)’#Q(i)*Psi(i-1)...

% +Psi(i-1)’#Q_dot(i)*Psi(i-1) + Psi(i-1)°*Qi*PsiDot(i-1)
% X(1)=T(i)*X(i-1)*T(i)* + R(i)

% X. dot(1)=T_dot(i)*X(i-1)*T(i)? + T(i)*xX_dot(i-1)*T(i)’...

% +T(1)*X(i-1)*T_dot(i)? + R_dot(i)

Y(i)=Y(i-1) + X(i-1).*Q(4)
Y_dot(i)=Y_dot(i-1) + X_dot(i-1).#Q(i) + X(i-1).%Q_dot(i)

%

4

Y% Then, Psi(n), PsiDot(n), W(n), W_dot{(n), X(n), X_dot(n),
% Y(n) and Y.dot(n) apply to the period covered by Psi.

4

7, Aok RNkl Rk ok kR Rk kg kR ka dok kR R ko Rk

4

% Train concept: The fastest sampler has fraquent burats or trains of
% X or k-1 consecutive short sample periods where:

% k=trunc(2’nd shortest sample period/shortest sample period).

% Data for these fixed STM’s are precalculated and stored in ’'trndat’
% to avoid subsequent reduce redundant calculations. ‘trndat’ includes
é the discrets events on both ands of the fast ’sample trainm.’

% The precalculated tindat and cc parameters are defined as:

4

% aq - [Wt ; W21

4 23 = (X1 x21]

1 88 - (yr;v2]

§ tt - { Peit ; Psi2]

4 Paq - [Wi dot .t ... Wi.dot_nvart ;

4 W2.dot.1 ... W2_dot_nvart]

% prr - { Xi.dot.1 ... X1.dot_nvart ;

] X2.dot 1 ... X2_dot_nvart]

4 pss . [Yi.dot.l ... Yi.dot nvart ;

] ¥i.dot.2 ... Y2_dot_nvart]

% ptt - { Psit dot.1 ... Peii_dot_nvart ;

§ Psi2_dot.t ... Psi2_dot.nvart]

% Where Psii, Wi, X1 and Y1 apply to the shorter train (k-1 periods),
% and Psi2, W2, X2, and Y2 apply to the longer train (k periods).

% The ’'_dot.i' notation indicates the partial with respect to the i’th
§ variable (theta elament) in the fast sequence (nvart such variables).
% ond of function Psi_plus $$$3$3383388888898588885388588888888888888888

E.3.8 Precomputation for psi2plus: trains2.m
tunction [QQ,RR,SS,TT,QQdot,RRdot,SSdot,TTdot]s. ..

153

154 Appendix E. Computer Codes

trains2(v0,xO,AB.DS,seqptr,varptr.consts,block.tvarsel,cvarsol);

Y% R P T S T TP T
% ** This version is limited to nseq=1 or 2 only. *»
Y% AP S A b e

4
% See acstgrd2.m for additional comments and discussion

fprintf(® Train2: step: *);

nx=consta(i); nxc=consts (2); - nxs=consts (3);

nvar=consts(5) ; nvarc=consts(6); nseq=conets(7);

seqlen=consts(8); keyseqwconsts(9); fastseqm=consts(il);
ABwide=nxc+nxs; cycles=round(consts(12)/consts(13)); % trainlen/speriod
nvart=length(tvarsel); nxvanx+*nvart;
nvarctasum(varptr(tvarsel,1)==0);

% indices for array operations
cols=1:nx; ccla2acols+nx; offcols=cols-nx;
phirows=1:nxc; phi2rous=phirows+nxc; phi3rows=phi2rows+nxc;

phicols=1:ABvide; phi2colssphicols+ABuide; phi3colssphi2cols+ABwide;
varindx={:nvart;

% COMPUTE PARAMETERS FOR ONE CYCLE OF FASTSEQ.
. Put first event in train data

isp=-gaqptr(fastseq,1); % initial event number
blki=isp*nx+offcols;
rouselisfind (any(DS(:,blki)’-eye(nx))); % non-identity rovs
Quzeros(nx); Qdotmzeros (nx,nxv) ; % initial W/wWdot
Rezeros(nx); Rdotezeros (nx,nxv); ¥ initila X/Xdot
S=0; Sdetezeros(i,nvart); Hinitial Y/Ydot
TeDS(:,blk1); Tdot=zeros(nx,nxv) ; % initial Psi/PeiDot
varselistind(varptr(:,1) 'esisp); % variadbles in fastseq
for iwvarsell; % stap thru fastseq vars

ivsvarptr(i,2); dcwvarptr(i,3)+block(i); ¥ Tdot row/zolumn

Tdot(ir,ic)=i; % Tdct(ir,ic)=1
end; % for lwvarsell
fprintf(int2atr(1)); % progress dieplay
% Include rest of first cycle in train data
foxr jw2:seqlen;

iapw-seqptr(fastseq,j); % event identifier
it isp>0, % isp points to DS block

4 DISCRETE EVENT

blke=ispsnx+oficols; % index to DS

rovselefind (any(DS(:,blk)’~eye(nx))); % non-identity rowvs

E.3. Design Routines 155

stm=DS (rowsel,blk); % new stm
Tdot(rowsel, :)=stm*Tdot; ¥ PsiDot=stm*PsiDot
R{rowsel, :)=stm*R; % X=gtm#X
Rdot(rowsel, :)=atm*Rdot; % Xdot=stm*Xdot
for isvarindx, % for all Xdot blocks

inx=(i-1)*nx;
Rdot(:,inx+rowsel)=Rdot(:,inx+cols)*stm’; % Xdot=[stm*Xdot]*stm’
end; % for i=varindx

varselsfind(isp=svarptr(:,1)?); % find vars in stm
for i=svarsel, % for variables in stm, add Tdot terms
blk=block(i)+cols;

irsvarptr(i,2); icavarptr(i,3);
Tdot(ir,blk)=Tdot(ir,blk)+T(ic,:) ;% PsiDot=stmsPsiDot+stmDot*Psi
icoablock(i)+ir; % Xdot=stmsXdot*stm’+stmsX*stmdot’+stmdot*X+stm’
Rdot(:,ico)=Rdot(:,ico)+Rk(:,ic); '
Rdot(ic,blk)=Rdot(ic,blk)+R(:,ic)?;

end; ¥ for isvarsel

T(xowsel,:)=gtmsT; % PgimstmePsi
R(:,rowsel)=Restm’; % X=[stm¢X]*stm’ + process noise
R(rowsel ,rowsel)«R(rowsel,rowsel)+x0(rowsel,rovsel);
else, % isp must be < O % continuous time only
% CONTINUQUS TIME TRANSITION

ti=~isp; ABti=ABatl; At1=ABt1(phirows,phirovs);
tempuq=[~ABt1’,w0(phicols,phicols)»ti;zeros (ABwide), ABt1];
tempxi=[-At1,x0(phirows,phirows)*t1;zeros(nxc), Ati’];
if nvarc>0,

ABdotmzeros (ABvide); imcvarsel(1i);

ABdot (varptr(1,2) ,varptr(i,3))sty;

tempwqs [tempwq, [2eros (ABvide) ; ABdot] ; zeros (ABwide, 2¢ABvwide) ,ABt1];

tempxr=(tempxr, [zeros (nxc) ; ABdot (phirovs ,phirows)];...

zeros (nxc,2snxc) ,At);

end; % if nvarc>0
tempwgeexpn(tempuq) ;
tompxrsexpm(tempxr) ;
phixstempuq(phi2cols,phi2cols); % phi extendad
phisphix(phirovs,:); % phis[Phi(t1),Gammalti)];
QuimyOsty; % Qtis\integral.{0}~{t1)} B’exp(A’t) w0 exp(At) B dt
Qt1(phicols,phicols)=phix’¢tempuq(phicols,phi2cols);
% Rtim\integral_ {0}-{t1} exp(At) x0 exp(A’t) dt
Rtisphi(: ,phirows)*tempxr(phirous,phi2rous);

SwS+sum(sun(R.»Qt1)); % delta cost correct
qtempsT’eQti; % Psi’eQ
qqdoteqtempsTdot; % Psi’sQePsiDot
QdotsQdot+qqdot; ¥ Wdot=Wdot+Psi'sQsPsilot
for imvarindx; % column operations

inx=(i-1)*nx; blkwinx+cols; colsel=inxephicols; roweelwinxephirovs;
% Wdot=[Wdot+Psi’eQePsiDot]+PsiDot’ +QePei
Qdot(:,blk)=Qdot(:,blk)+qqdot(:,blk)’;

156 Appendix E. Computer Codes

Sdot(i)=Sdot(i)+sum(sum(Rdot(:,blk}).4Qc1));

Rdot(:,rowssl)=Rdot(:,colsel)*phi’; % Xdot=Xdot*stm’
end; % for iasvarindx
01dR=R;
R(phirows, :)=phi*R(phiccls,:); % X=stmsX
Rdot(phirows, :)=phi*Rdoc(phirols,:); % Xdot=stm*[Xdot*stm’]

Tdot(phirows, :)=phi*Tdot(phicols,:);
% INCLUDE: T._dot, J_dot, and R_dot TERMS (IF ANY)
for j=1i:nvarct, % cont. vars. (not tested)
i=min(find(cvarssl(j)==tvarsel));
inx=block(cvarsel(j));
blk=inx+cols; rowsel=inx+phirows; colsel=inx+phicols;
phidotstempwq(phirows,phi3cols); % T_dot
Tdot(phirows,blk)=Tdot(phirows,blk)+phidot+T(phicols,:);
rtemp=phi(:,phirows)stempxr(phirows,phidrows); % R_dot
Rdot(phirows,rowsel)sRdot(phirows,rowsal)+rtemp; % Xdot+Rdot
rrdot=R(:,phicols)*phidot’; % stmeX*stmDot’
fidot(:,rowsel)=Rdot(:,rowsel)+rrdot;
Rdot(phirows,blk)=Rdot(phirows,blk)+rrdot’;
qqtemp=phix’*tempwy(phicols,phi3cols); % Q.dot
Sdot(i)=8dot(i)+sun(sum(01dR(phicols,phicols) .xqqtemp));
tqdot=T(:,phicols)*qqtemp;
Qdot(:,blk)=Qdot(:,blk)+tqdot#T(phicols,:);
it j<nvarc; % set up next cvar, if any
ABdote=zeros(ABwide); imcvarsel (j+1);
ABdot (varptr(i,2),varptr(i,3))=ti;
tempwq(phi2cols,phi3cols)=ABdot;
tempxr (phi2rows,phi3rows)=ABdot (phirows,phirows);
tempuqrexpm(tempuq) ;
tompxr=axpm(tempxr);
ond; 4 if i“wcvarsel(())
ond; % for isi:nvarc

Q=Q+qtempsT; % WsW+estm’#Qeatn
T(phirows,:)sphi*T(phicols,:); - % PoimstmsPai
R(:,phirous)=R(:,phicols)»phi’; % Xe[stmeX]estm’

R(phirovs,phirovs)=R(phirows,phirows)+Rti; Y% Xe[stmeXesta’]+R
end; % if ispd>0 ... else ...
fprintf (int2str(j));
end; % for jw2:seqlen % no more discretes in speriod

% EXTEND TO 'CYCLES' & 'CYCLES+1’ PERIODS AND ADD FINAL DISCRETE EVENT
fprintf(’, cycle: ');

PuinT; PsiDot=Tdot;

XsR; Xdots=Rdot;

WeQ; Wdot=Qdot;

cens; ccdoteSdot;

stm=DS(rowsell,blkl); % stm for final event

fprintf (int2str(1));

E.3. Design Routines 157

loopcount=[cycles,2]; Y% set number of loop iterations
for case=1:2; % 1: first cycles periods; 2: last period
offcyc=(case-1)*(cycles~1);
for i=2:loopcount(case),

ccacctsum(sum(X.*Q))+S;

qtemp=Psi’*Q;

qqdot=qtemp*PsiDot;

qqqdot=Psi’*»Qdot;

Wdot=Wdot+qqdot;

0ldx=X;

X=T*X;

0ldXdot=Xdot;

Xdot=T«Xdot;

PsiDot=T*PgiDot;

for jsvarindx,
jnx=(j-1)*nx; blkejnx+cols;
Wdot(:,blk)=Wdot(:,blk)+qqdot(:,blk)*+qqqdot(:,blk)*Psi;
ccdot(j)weccdot (j)+sum(sum(01dXdot(:,blk) .*q. ..

+01dX.*Qdot(:,blk)))+Sdot(j);

rtemp=X*Tdot (:,blk)’;
Xdot(:,blk)=Xdot(:,blk)*T’ + rtemp + rtemp’+Rdot(:,blk);
PsiDot(:,blk)=PsiDot(:,blk)+Tdot(:,blk)#Psi;

end; % for jwvarindx

W=N+qtomp*Pai;

PsimTePsji;

XuXuT’+R;

fprinte (int2str(ivotfcyc));
end;
basew(case-1)+*nx; colselsbase+cols; rovselsbase+rowsell;
QQ(colmel, :)=W; QQdot{colsel, :)=Wdot;
SS(case)=cc; $Sdot(case, :)=cedot;
RR(colsel,:)eX; RR(rousel, :)wstmeX;

RRdot(colsel,:)wXdot; RRdot(rowsel,:)wstmeXdot;
TTdot(colsel, :)=PaiDot; TTdot(rousel,:)=stmePsiDot;
for isvarindx, inxs(i~1)enx;
RRdot(colsel,inx+rousell)=RRdot(colsel, inxecols)+stm’;
ond; ¥ for ievarindx
for isvarseli, blkeblock(i)+cols;
irsvarptr(4,2); icsvarptr(i,3); irosbasesir; icosblock(i)eir;
TTdot(iro,blk)=TTdot (iro,blk)+Pei(ic,:);
RRdot (colwel,ico)wRRdot(colsel,ico)+RR(colsel,ic);
RRdot (iro,blk)=RRdot(iro,blk)+RR(colsel,ic)’;
ond; ¥ for iwvarsell
TT(colsel,:)=Psi; TT(rousel, :)wstuePsi;
RR(colsel,rowseli)=RR(colsel,:)*sta’;
RR(rowsel,rovseli)sRR(rowsel,rovsell)+x0(rousell,rouseli);
fprinte(*/*);

158 Appendix E. Computer Codes

end; % for case=i:2
fprintf(’DONE.\n’);

% end of function trains2.m $$$$$$$SEISSSESISSESESESES$5853588888888

E.3.9 STM Only: psi2.m

function [Pai,XX,WW,YY]s...
psi2(t2go,AB,DS,sptr,con,x0,%0,qq,xr,88,tt);

% Compute STM and related matrices.
% See function psi2plus for detailed explanation.

% UNPACK CONSTANTS

nx=con(1); nxc=con(2); nxs=con(3);
nvar=con(§); nvarc=con(6) ; nseq=con(7);
seqlen=con(8); BTP=con(10); fastsequwcon(11);
trainlen=acon(12); speriodscon(13); ABwidesnxc+nxs;
4 CREATE INDICIES FOR ARRAY QPERATIONS

cols=i:nx; off{cols=colas-nx; varindxs=i:nvar;
phirows=1:nxc; x2colasphirous+nxc;

phicolswi:ABwide; v2colas=phicols+ABvide;

oftpcols=phicola-nx; offprows=phirovs-nx;

VERIFY t2go IN RANGE
if length(t2go) “snseq, errmsg(’Extra/missing phase times.'); end;
if (any(t2go<0)), errmsg(’Negative time to go in psi plus.’); end;

Yevenemnccmneneea-Got Pointers for Initial Discrete Eventsr=sveesmaxcawe

% t2go(1) will be the time from BTP start to the firat discrete

% event for each sequence. ‘sptr(i,spindz(i))’ defines the event.

donewi; spindx=ones(t2go)+seqlen; laststep=zeros(t2go);

wvhile done>Q; % completion flag
for i=i:nmeq,laststep(i)=sptr(d,spindx(i));end; ¥% indox to last event
laststep=lastotap.*(lastatep>0); % mask discrete events
backstepw(laststep<tgo); % boolean
done=sun(backstep) ; % 0 it done
t2go=t2go~backstaep.slastatep; % adjust r2go
t2gowt2go . #(t2go>0); % eliminate any negative times
spindxespindx-backstep; % adjust index
apindxwapindx+seqlens (spindx<t) ; % tix possible wrap-around

end; % vhile doned0 _

spindxeapindx+1; % set to current event

spindx=spindx-(spindx>seqlen)+seqlen; % fix urap-around

R cvmummasecuesaCompute Pai, XX, WH, YY-remevomsvccmusmonce
% Pei = psi, the state transition matrix for the spacified t2go.
L XX = E xx’ at BIP end from process noiame during BIP

E.3. Design Routines 159

% WW = matrix s.t. x0’+WW*x0 is the cost for x0 error at BTP start
% YY = cost from process noise during BPT
% All used as accumulators for intermediate results during recursions.

4 INITIALIZE FOR FIRST EVENT

done=1; elaptime=0; % time into BTP
zorotol=BTP*aeps;

(t1,i1]=min(t2go) ; % time to first avent
isp=-sptr(il,spindx(il)); % identity first stm
XX=zeros(nx); WWszeros(nx); YY=0; Psi=aye(nx); % initialize outputs
% QUICKIE INITIAL DISCRETE EVENT IF PRACTICAL

if isp>0, % first event discrete

blksel=isp*nx+offcols;

PgiaDS(:,blksel);

spindx(il1)=spindx(il)+1;
end; % if isp>0

% MAIN STATE TRANSITION MATRIX (stm) CALCULATION LOOP
vhile done>0, % main Psi loop
it (elaptime+ti+zerotol)>=BTP, ti=BTP-elaptime;dones0;end; %last staep
spindx=spindx-(spindx>seqlen)+saeqlen; % fix any wrap-around
i? ti¢=0, % t1=0 =>noxt event nov
st=gort(t2go); % get next event time too
t288t(2); % time to second event
iz (ilw=fastseq)&(t2>=trainlen)&(spindx(il)=ei)k...
((trainlen+elaptime)<BTP), % next event is a train
A TRAIN EVENT
rowsel=cols; sselwi; dt=trainlen; % use short train indices

12 (s2>=(dt+aperiod))e((dt+elaptinesapericd)<BTP), % k cycles
rowselsrovsel+nx; ssels2; dtedt+speriod;¥ use long train indices
end;
staett(rowvsel,:);
YYeYVesun(sun(XX.vqq(rovael,:)))+ss(ssel);
qtampePei’eqq(rousel,:);
XXentreXX;
WW=WieqtanpePsi;
PaimstusPsi;
IX=XXentm’+rr(rovsel,:);
t2gostlgo=dt;
slaptimemslaptime+dt;
t2go(il)eey;
else, % next event NOT A TRAIN EVENT
isp=-sptr(il,spindx(il)); % event identifier
it isp>0, % isp points to DS block
% DISCRETE EVENT
blksel=ispenxeoffcols;
rowsalefind(any(D5(:,blkael)’-aye(nx)));
if length(rovsel)<0, rowselsi; end; ¥ guard for rowsel=eye

160 Appendix E, Computer Codes

stm=DS (rowsel,blksel);
XX(rowsel, :)=sstm¥XX;
Psi(rovsel,:)=stm*Psi;
XX(:,rousel)sXX*stm’;
XX(rowsel,rowsel)=XX(rowsel,rowsel)+x0(rowsel,rowsel);
else, % isp must be < 0 % i.e. continuous segment
t2go(i1)=t2go(il)-isp; % increase that t2go element
end; %if isp>0 ... else ...
end; % if (ii==fastseq ... else ..
spindx(il)=spindx(i1)+1; %4 increment sequence index
else, % if (ti<s 0) i.e. t1>0 => time passes, continuous segment

4 CONTINUOUS TIME TRANSITIONS
ABt1=ABsti; '
At1=ABt1 (phirows,phirows);
tempwq=[-ABt1i’,w0(phicols,phicols)#t1i;zeros (ABwida), ABti];
tompxr=[~-At1,x0(phirows,phirows)sti;zeros(nxc), At1’];
tempwqaexpn{tempuq) ;
tempxr=expm(tempxr);
phix=tempwq(w2cols,w2cols);
phi=phix(phirous,:);
Qti=uOety;
Qt1(phicols,phicols)=phix’stenpwq(phicols,w2cols);
qteup=Pai’«Qtl;
YY=YY¥+sum(sun(XX.#Qe1));
Rtiwphi(:,phirous)etenpxr(phirows,x2cols);
XX(phirows,:)wphisXX(phicols,:);
Wi=WW+qtompePai;
Psi(phirovs, :)mphiePsi (phicols,:);
XX(:,phirous)wXX(: ,phicols)ephi’;
XX(pbirous,phirouvs)=XX(phirows,phirows)+Rel;

olaptimewelaptimesti;
t2gontgo-tl;
ond; % if tl <=0 ... olse ...
{t1,11)=min(t2g0); % next event & its seguence
end; % while elaptime+ti<BIP % nov more discretes in BIP

% ond function Pai2 ¢4S04eEEE000LLEES0E04S0EILEEREEESIEEREREINE

E.3.10 Linear Search: linsrch2.m

function optatp=...
linsrch2(dir,istep,icost,btime,u0,x0,AB,DS, itheta,seqptr, varptr,consts) ;

% linsrch finds the step (in the specified direction) to minimize cost.
% icost = cost vith alphas0, and ithetatoptatpedir ss>theta for min cost

E.3. Design Routines 161

nx=consts(1); .

GoodEnuf=,10; % 10 pct convergence tolerance
tol=1e-8*icost+eps*nx*nx*nx; % minimum cost improvement
Zorostep=ie-10; % threshold for effectively zero step
count=0; % iteration counter

maxcount=30; % Loop quits after this many iterations
gaw2=2/(1+sqrt(5)); % golden section ratio (.62 approx)
gami=i-gam2; % golden section ratio (.38 approx)
scopestep=5; % factor to shrink/stretch search region
istep=real(istep); % make sure it’s real

optstp=istep; % load some initial value

fprintf(? 1linsrch2:’);

% Part 1: find region containing minimum (assuming cost unimodal).

alphaazaeros(4,1); % vector of step sizea

cost=zaros(4,1); % vector of corresponding costs
cost(1)micoat;

alpha(2)»istep;

tthetamitheta+alpha(2)»dix; % update temporary theta

[AB,DS]=updata(AB,DS, tthetk, varptr,consta) ; % update AB & DS
coat(2)=acst2(btizme,w0,x0,AB,DS,seqptr,consts);

alpha(3)=alpha(2);

cost(3)=cont(2);

A¢printe (* linarch2: initial end point » ¥g’,alpha(2));

%fprinte{’, costw %3.5g \n’,cost(2));

fprint? (’E');

it cost(2)<cost(l), % cost still decreasing
casesl; factorescopestep; Ctrpte2; refendwd; asymbe’>’;

olse, % if coat(4)<cost(l) % iotep is past minimua
cases2; factorsi/scopestep; ctrpts3; refeudwi; symbm’<?;

end; : '

vhile cost(ctrpt)>wcost(zetend); % step until center is lower
countecountei;
if count>maxcount, optstps-eps; break; end; % failure
alpha(2)=alpha(3); '
cost(2)ucost(3);
alpha(3)=alpha(2)efactor; % new alpha(3)

ttheta=ithetasalpha(3)edir;
{AB,DS]=updata(AB,DS, ttheta, varptr,consts);
cost(3)=acst2(btine,w0,x0,AB,D3,seqptr, consts);
fprintt (symb);
%eprintf(’ scoping: alpha w» ¥%g’,alpha(3));
%tprintf(’, costw %3.6g \n’,cost(3));

end; ¥ while cost(ctrpt)>=cost(refand)

162 Appendix E. Computer Codes

if optstp<=eps; return; end; % error return #1
best3=1:3; % three best points
temp4=ones(4,1)*cost(ctrpt); % best cost so far

% Part 2: guarded parabolic/golden section search for minimum

convaerr=i+max(cost);

while converr>=(GoodEnuf*(icost-temp4(1))+tol), ¥ comvergas to 10 pct
count=count+i;
if count>maxcount, optstp=-eps; break; end; % failure

x=alpha(best3); y=cost(best3);
[x,xindx]=sort(x); y=y(xindx); % put alpha-ascending order
xspan=x(3)-x(1); xc=(x(2)-x(1))/xspan;

X=[1, 1; xc¥xc, xc);

Y={(y(3)-y(1)3: (y(-y(1))];

C=X\Y; % approx: y=C(1)sx"2+C(2)*x+y(1)
min=-C(2)/(2+C(1)); ¥ x estimate for min cost
ymin» (C(1)exmin+C(2)) »xminey(1); ¥ estimate for min cost

it (2¢x(2))>(x(1)+x(3)), xgsgami; else, xg=gam2; end;
it abs(xmin-xc)>aba(xg-xc),

newalphawx(1)+xgexspan; caseel; ¥ new alpha if golden section
vlse,

nevalphasx(1)+xminexspan; czses2: % newv alpha if parabolic fit
and;
alpha=(x;nevalphal;
tthetasithetatdirepevalpha;
(AB,DS)=update(AB,DS, tthata, varpir,consts);
nevcostwacat2(btine,u0,20,48,05,seqptr, consts) ;
coat=[y;nevcost];
{tewpd,bostd)egort(cost);
best3=besti(1:3);
convaxyetonpd(4)-tanpa(l);
12 casowe2, cewabs(ymin-navcost); convexrsmin{converr,ce);

Ytprinte(’ intorp: step= *);
tprinct ('P?); o

olss,
Ltprinc(’ golden: step= ?);
Sprint('G’);

end;

Ltprint2('%6.6¢, cost= Y12.5e¢, erre %12.5¢ \n’,alpha(4),cost(4),converr);
end; ¥ vhile convergence error > 5 pexcent

optatp=real(aipha(best4(1))); A
Yprints(® Final coste %3.5g, final stepe %3.5g \n’,temp4(1),optstp);
fprinef(’ Costs %7.5g, stepw L7.5g.\n’,tenpd(l),optstp);

return;

E.2. Desigu Routines , _ 163

% end of functiun linsrch $$$$$$$SSSSSESSSISSITISEEIISE538688885¢558

164 ' .Appendix E. Computer Codes

,.
;

Bibliography

[Amid0]

[APS1)

[Ber86]

[BF75]

[BGSO]

(BHT5]

[BHS4]

[CW66]

Nefteli Amit. Optimal Control of Multirate Digital Control Systems.
PhD thesis, Stanford University, Department of Aeronautics and Astro-
nautics, Stanford, CA 94305, July 1980. SUDAAR #523.

Naftali Amit and J. David Powell. Optimal control of multirate systerns.
In AIAA, Guidance and Control Conference, Albuquerque, NM, Aug
1981. Paper No. 81-1797.

Martin Conrad Berg. The Design of Multirate Digital Control Systems.
PhD thesis, Stanford University, Department of Aeronautics and Astro-
nautics, Stanford, CA 94305, March 1986. SUDAAR #553.

W. H. Boykin and R. D. Frazier. Analysis of multiloop multirate sam-
pled data systems. ATAA Journal, 13(4):453-456, April 1975.

John R. Broussard and Douglas P. Glasson. Optimal multirate flight
control design. In 1980 Joint Automatic Control Conference, AIAA,
San Francisco, CA, Aug 1980,

Arthur E. Bryson, Jr. and Yu-chi Ho. Applied Optimal Control Hemi-
sphere Publisluug Corp., Washington, 1975.

John R. Broussard and Nesim Halyo. Optimal multi-rate output feed-
back. In Proceedings of 29’rd Conference on Decision and Control,
pages 926-929, IEEE, Dec 1984,

T. C. Coffey and I. J. Williams. Stability analysis of multiloop, multirate
sampled data systems. ATAA Journal, 4(12):2178-2190, Dec 1966.

165

166

[DB74]

[FP80]

[Ganb9)

(GB79]

[Glag3)

[GMWS1]

[GVL83]

[Jur67]

(Jur68]

[Kai80]

[Kai81]

[KB59)

BIBLIOGRAPHY

Germund Dahlquist and Ake Bjork. Numerical Methods. Prentice-Hall,
Englewood Cliffs, NJ, 1974.

Gene F. Franklin and J. David Powell. Digital Control. Addisc;n—Wesley
Publishing Company, Reading, MA, 1980.

R. F. Gantmacher. The Theory of Mairices. Chelsea Publishing Com-
pany, New York, N.Y., 1959.

Douglas P. Glasson and John R. Broussard. Design of Optimal Mul-
tirate Estimators and Controllers- Preliminary Results. Technical Re-
port TIM-1356-1, The Analytic Sciences Corporation, Reading, MA,
Aug 1979.

Douglas P. Glasson. Development and application of multirate digital
control. Control System Magazine, :2-8, Nov 1983.

Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Op-
timization. Academic Press, 1981.

Gene H. Golub and Charles E. Van Loan. Matriz Computations. The
Johns Hopkins University Press, Baltimore, MD, 1983.

E. I. Jury. A general z-transform for sampled data systems. IEEE
Transactions on Automatic Control, AC-12:606-608, Oct 1967.

E. . Jury. Sampled Data Control Systems. John Wiley & Sons, Inc.,
New York, 1968.

Thomas Kailath, Linear Systems. Prentice-Hall, Inc., Englewood Cliffs,
N. J., 1980.

Thomas Kailath. Lectures on Wiener and Kalman Filiering. Springer-
Verlag, Wein - New York, 1981.

R. E. Kalman and J. E. Bertram. A unified approach to the theory of
sampling systems. Journal of the Franklin Institute, 267:405-436, May
1959.

BIBLIOGRAPHY 167

[Kok84]

[Kra57]

[Len86]

Petar V. Kokotovic. Applications of singular perturbation techniques
to control problems. SIAM Review, 26(4):501-550, Oct 1984.

G. M. Kranc. Input-output analysis of multirate feedback systems. IRE
Transactions on Automatic Conirol, AC-3:21-28, Nov 1957.

Brengt Lennartson. On the Design of Stochastic Control Systems with
Multirate Sampling. PhD thesis, Chalmers University of Technology,
Goteborg, Sweden, 1986. Technical Report 161.

[MLBKS85] Cleve Moler, John Little, Steve Bangert, and Steve Kleiman. PC-

[MVL78)

[RF58]

[SBD*76]

[SR55]

(Str76)

[VL78]

MATLAB User’s Guide. The MathWorks, Inc., Sherborn, MA, Nov
1985. Version 2.0.

Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute
the exponential of a matrix. SIAM Review, 20(4):801-836, Oct 1978.

J. R. Ragazzini and Gene F. Franklin. Sampled Data Control Systems.
McGraw-Hill, New York, 1958. -

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. [kebe, V. C.
Klema, and C. B. Moler. Matriz Eigensysiem Routines - EISPACK
Guide. Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2
edition, 1976. |

J. Sklansky and J. R. Ragazzini. Analysis of errors in sampled data
feedback systems. AIEE Transactions, 74(11):65-71, May 1965.

Gilbert Strang. Linear Algebra and its Applications, Academic Press,
New York, 1976.

Charles Van Loan. Computing integrals involving the matrix exponen-
tial. JEEE Transactions on Automatic Control, AC-23(3):395-404, Jun
1978,

168

[Wal81]

[WHTS

BIBLIOGRAPHY

Vincent M. Walton. State space stability analysis of multirate-multiloop
sampled data systems. In AAS/AIAA Astrodynamics Specialist Confer-
ence, Aug 1981. Paper 81-201. .

R. F. Whitbeck and L. G. Hofmann. Analysis of Digital Flight Control
Systems with Flying Qualities Applications. Technical Report AFFDL-
TR-78-115, Air Force Flight Dynamics Laboratory, Sep 1978. Volume
IL

